Research Article
BibTex RIS Cite

Synthesis of multiarm star block copolymer based on host-guest inclusion complexation

Year 2022, Volume: 2 Issue: 1, 1 - 15, 31.01.2022
https://doi.org/10.29228/JIENS.54191

Abstract

Supramolecular multiarm star block copolymer ((CD-PEG)p-(Ada-PS)n-polyDVB) was prepared by host-guest interaction of -cyclodextrin ( -CD) end functionalized polyethylene glycol (-CD-PEG) and adamantane peripherally functionalized multiarm star polymer ((Ada-PS)n-polyDVB). The -CD-PEG was synthesized by copper-catalyzed azide/alkyne cycloaddition reaction (CuAAC) of alkyne functional PEG with mono azide functional β-CD (β-CD-N3). Adamantane functional polystyrene (Ada-PS) was prepared by atom transfer radical polymerization (ATRP) of styrene (St) and was allowed to react with divinyl benzene (DVB) as a linking agent giving (Ada-PS)n-polyDVB multiarm star polymer. The structures of -CD-PEG and (Ada-PS)n-polyDVB multiarm star formation were determined by 1H NMR and GPC. 2D ROESY NMR and DLS analysis of (CD-PEG)p-(Ada-PS)n-polyDVB were carried out to validate the formation of the inclusion complex. The evidence of increased molecular weights and size distributions supported the supramolecular multiarm star block copolymer formation.

References

  • Gao H, Matyjaszewski K (2007) Low-polydispersity star polymers with core functionality by crosslinking macromonomers using functional ATRP initiators. Macromolecules 40(3):399–401. https://doi.org/10.1021/ma062640d
  • Gao H, Matyjaszewski K (2008) Synthesis of star polymers by a new, ‘‘Core-First’’ method: sequential polymerization of cross-linker and monomer. Macromolecules 41(4):1118–1125. https://doi.org/10.1021/ma702560f
  • Hadjichristidis N (1999) Synthesis of miktoarm star (-star) polymers. J Polym Sci, Part A: Polym Chem 37(7):857–871. https://doi.org/10.1002/(SICI)1099-0518(19990401)37:7<857::AID-POLA1>3.0.CO;2-P
  • Hadjichristidis N, Pitsikalis M, Pispas S, Iatrou H (2001) Polymers with complex architecture by living anionic polymerization. Chem Rev 101(12):3747–3792. https://doi.org/10.1021/cr9901337
  • Blencowe A, Tan JF, Goh TK, Qiao GG (2009) Core cross-linked star polymers via controlled radical polymerisation. Polymer 50(1):5–32. https://doi.org/10.1016/j.polymer.2008.09.049
  • Ren JM, McKenzie TG, Fu Q, Wong EHH, Xu J, An Z, Shanmugam S, Davis TP, Boyer C, Qiao GG (2016) Star polymers. Chem Rev 116(12):6743–6836. https://doi.org/10.1021/acs.chemrev.6b00008
  • Kuckling D, Wycisk A (2013) Stimuli-responsive star polymers. J Polym Sci, Part A: Polym Chem 51(14):2980–2994. https://doi.org/10.1002/pola.26696
  • Altintas O, Vogt AP, Barner-Kowollik C, Tunca U (2012) Constructing star polymers via modular ligation strategies. Polym Chem UK 3(1):34. https://doi.org/10.1039/c1py00249j
  • Altintas, O, Schulze-Suenninghausen, D, Luy, B, Barner-Kowollik, C (2013). Facile Preparation of Supramolecular H-Shaped (Ter)polymers via Multiple Hydrogen Bonding. Acs Macro Lett 2(3):211-216. https://doi.org/10.1021/mz400066r
  • Fustin, C. A, Guillet, P, Schubert, U. S, Gohy, J. F (2007). Metallo-Supramolecular Block Copolymers. Advanced Materials 19(13):1665-1673. https://doi.org/10.1002/adma.200602170
  • Chen, G, Jiang, M (2011). Cyclodextrin-based inclusion complexation bridging supramolecular chemistry and macromolecular self-assembly. Chemical Society reviews 40(5):2254-2266. https://doi.org/10.1039/C0CS00153H
  • Zou, C, Zhao, P, Ge, J, Lei, Y, Luo, P (2012). -Cyclodextrin modified anionic and cationic acrylamide polymers for enhancing oil recovery. Carbohydr. Polym 87(1):607–613. https://doi.org/10.1016/j.carbpol.2011.08.031
  • Xiao, H, Cezar, N (2005). Cationic-modified cyclodextrin nanosphere/anionic polymer as flocculation/sorption systems. Colloid Interface Sci 283(2):406–413. https://doi.org/10.1016/j.jcis.2004.09.008
  • Stadermann, J, Komber, H, Erber, M, Däbritz, F, Ritter, H, Voit, B (2011). Diblock Copolymer Formation via Self-Assembly of Cyclodextrin and Adamantyl End-Functionalized Polymers. Macromolecules 44(9):3250-3259. https://doi.org/10.1021/ma200048a
  • Zeng, J, Shi, K, Zhang, Y, Sun, X, Zhang, B (2008). Construction and micellization of a noncovalent double hydrophilic block copolymer. Chem Commun 32:3753-3755. https://doi.org/10.1039/B806858E
  • Liu, H, Zhang, Y, Hu, J, Li, C, Liu, S (2009). Multi-Responsive Supramolecular Double Hydrophilic Diblock Copolymer Driven by Host-Guest Inclusion Complexation between β-Cyclodextrin and Adamantyl Moieties. Macromol Chem Phys 210: 2125-2137. https://doi.org/10.1002/macp.200900279
  • Bertrand, A, Stenzel, M, Fleury, E, Bernard, J (2012). Host–guest driven supramolecular assembly of reversible comb-shaped polymers in aqueous solution. Polym Chem 3(2):377-383. https://doi.org/10.1039/C1PY00478F
  • Zhang, Z.-X, Liu, X, Xu, F. J, Loh, X. J, Kang, E.-T, Neoh, K.-G, Li, J (2008). Pseudo-Block Copolymer Based on Star-Shaped Poly(N-isopropylacrylamide) with a β-Cyclodextrin Core and Guest-Bearing PEG: Controlling Thermoresponsivity through Supramolecular Self-Assembly. Macromolecules 41(16):5967-5970. https://doi.org/10.1021/ma8009646
  • Setijadi, E, Tao, L, Liu, J, Jia, Z, Boyer, C, Davis, T. P (2009). Biodegradable star polymers functionalized with beta-cyclodextrin inclusion complexes. Biomacromolecules 10(9):2699-2707. https://doi.org/10.1021/bm900646g
  • Schmidt, B. V. K. J, Hetzer, M, Ritter, H, Barner-Kowollik, C (2013). UV Light and Temperature Responsive Supramolecular ABA Triblock Copolymers via Reversible Cyclodextrin Complexation. Macromolecules 46(3):1054-1065. https://doi.org/10.1021/ma302386w
  • Schmidt, B. V. K. J, Hetzer, M, Ritter, H, Barner-Kowollik, C (2012). Miktoarm star polymers via cyclodextrin-driven supramolecular self-assembly. Polym Chem-Uk 3(11):3064-3067. https://doi.org/10.1039/C2PY20214J
  • Schmidt, B. V. K. J, Rudolph, T, Hetzer, M, Ritter, H, Schacher, F. H, Barner-Kowollik, C (2012). Supramolecular three-armed star polymers via cyclodextrin host–guest self-assembly. Polym Chem-Uk 3(11):3139-3145. https://doi.org/10.1039/C2PY20293J
  • Schmidt, B. V. K. J, Barner-Kowollik, C (2014). Supramolecular X- and H-shaped star block copolymers via cyclodextrin-driven supramolecular self-assembly. Polym Chem-Uk 5(7):2461-2472. https://doi.org/10.1039/C3PY01580G
  • Huan, X, Wang, D, Dong, R, Tu, C, Zhu, B, Yan, D, Zhu, X (2012). Supramolecular ABC Miktoarm Star Terpolymer Based on Host–Guest Inclusion Complexation. Macromolecules 45(15):5941-5947. https://doi.org/10.1021/ma300693h
  • Cakir, N, Hizal, G, Becer C. R (2015). Supramolecular glycopolymers with thermo-responsive self-assembly and lectin binding. Polym Chem-Uk 6 (37):6623-6631. https://doi.org/10.1039/C5PY00939A
  • Durmaz, H, Dag, A, Altintas, O, Erdogan, T, Hizal, G, Tunca, U (2007). One-Pot Synthesis of ABC Type Triblock Copolymers via in situ Click [3 + 2] and Diels−Alder [4 + 2] Reactions. Macromolecules 40 (2): 191-198. https://doi.org/10.1021/ma061819l
  • Cakir, N, Tunca, U, Hizal, G, Durmaz, H (2016). Heterofunctionalized multiarm star polymers via sequential thiol-para-fluoro and thiol-ene double “click” reactions. Macromol Chem Phys 217: 636-645. https://doi.org/10.1002/macp.201500300
  • Cakir Yigit, N, Hizal, G, Tunca, U (2018). A powerful tool for preparing peripherally post-functionalized multiarm star block copolymer. Polym Bull 75:3523–3538. https://doi.org/10.1007/s00289-017-2218-5
Year 2022, Volume: 2 Issue: 1, 1 - 15, 31.01.2022
https://doi.org/10.29228/JIENS.54191

Abstract

References

  • Gao H, Matyjaszewski K (2007) Low-polydispersity star polymers with core functionality by crosslinking macromonomers using functional ATRP initiators. Macromolecules 40(3):399–401. https://doi.org/10.1021/ma062640d
  • Gao H, Matyjaszewski K (2008) Synthesis of star polymers by a new, ‘‘Core-First’’ method: sequential polymerization of cross-linker and monomer. Macromolecules 41(4):1118–1125. https://doi.org/10.1021/ma702560f
  • Hadjichristidis N (1999) Synthesis of miktoarm star (-star) polymers. J Polym Sci, Part A: Polym Chem 37(7):857–871. https://doi.org/10.1002/(SICI)1099-0518(19990401)37:7<857::AID-POLA1>3.0.CO;2-P
  • Hadjichristidis N, Pitsikalis M, Pispas S, Iatrou H (2001) Polymers with complex architecture by living anionic polymerization. Chem Rev 101(12):3747–3792. https://doi.org/10.1021/cr9901337
  • Blencowe A, Tan JF, Goh TK, Qiao GG (2009) Core cross-linked star polymers via controlled radical polymerisation. Polymer 50(1):5–32. https://doi.org/10.1016/j.polymer.2008.09.049
  • Ren JM, McKenzie TG, Fu Q, Wong EHH, Xu J, An Z, Shanmugam S, Davis TP, Boyer C, Qiao GG (2016) Star polymers. Chem Rev 116(12):6743–6836. https://doi.org/10.1021/acs.chemrev.6b00008
  • Kuckling D, Wycisk A (2013) Stimuli-responsive star polymers. J Polym Sci, Part A: Polym Chem 51(14):2980–2994. https://doi.org/10.1002/pola.26696
  • Altintas O, Vogt AP, Barner-Kowollik C, Tunca U (2012) Constructing star polymers via modular ligation strategies. Polym Chem UK 3(1):34. https://doi.org/10.1039/c1py00249j
  • Altintas, O, Schulze-Suenninghausen, D, Luy, B, Barner-Kowollik, C (2013). Facile Preparation of Supramolecular H-Shaped (Ter)polymers via Multiple Hydrogen Bonding. Acs Macro Lett 2(3):211-216. https://doi.org/10.1021/mz400066r
  • Fustin, C. A, Guillet, P, Schubert, U. S, Gohy, J. F (2007). Metallo-Supramolecular Block Copolymers. Advanced Materials 19(13):1665-1673. https://doi.org/10.1002/adma.200602170
  • Chen, G, Jiang, M (2011). Cyclodextrin-based inclusion complexation bridging supramolecular chemistry and macromolecular self-assembly. Chemical Society reviews 40(5):2254-2266. https://doi.org/10.1039/C0CS00153H
  • Zou, C, Zhao, P, Ge, J, Lei, Y, Luo, P (2012). -Cyclodextrin modified anionic and cationic acrylamide polymers for enhancing oil recovery. Carbohydr. Polym 87(1):607–613. https://doi.org/10.1016/j.carbpol.2011.08.031
  • Xiao, H, Cezar, N (2005). Cationic-modified cyclodextrin nanosphere/anionic polymer as flocculation/sorption systems. Colloid Interface Sci 283(2):406–413. https://doi.org/10.1016/j.jcis.2004.09.008
  • Stadermann, J, Komber, H, Erber, M, Däbritz, F, Ritter, H, Voit, B (2011). Diblock Copolymer Formation via Self-Assembly of Cyclodextrin and Adamantyl End-Functionalized Polymers. Macromolecules 44(9):3250-3259. https://doi.org/10.1021/ma200048a
  • Zeng, J, Shi, K, Zhang, Y, Sun, X, Zhang, B (2008). Construction and micellization of a noncovalent double hydrophilic block copolymer. Chem Commun 32:3753-3755. https://doi.org/10.1039/B806858E
  • Liu, H, Zhang, Y, Hu, J, Li, C, Liu, S (2009). Multi-Responsive Supramolecular Double Hydrophilic Diblock Copolymer Driven by Host-Guest Inclusion Complexation between β-Cyclodextrin and Adamantyl Moieties. Macromol Chem Phys 210: 2125-2137. https://doi.org/10.1002/macp.200900279
  • Bertrand, A, Stenzel, M, Fleury, E, Bernard, J (2012). Host–guest driven supramolecular assembly of reversible comb-shaped polymers in aqueous solution. Polym Chem 3(2):377-383. https://doi.org/10.1039/C1PY00478F
  • Zhang, Z.-X, Liu, X, Xu, F. J, Loh, X. J, Kang, E.-T, Neoh, K.-G, Li, J (2008). Pseudo-Block Copolymer Based on Star-Shaped Poly(N-isopropylacrylamide) with a β-Cyclodextrin Core and Guest-Bearing PEG: Controlling Thermoresponsivity through Supramolecular Self-Assembly. Macromolecules 41(16):5967-5970. https://doi.org/10.1021/ma8009646
  • Setijadi, E, Tao, L, Liu, J, Jia, Z, Boyer, C, Davis, T. P (2009). Biodegradable star polymers functionalized with beta-cyclodextrin inclusion complexes. Biomacromolecules 10(9):2699-2707. https://doi.org/10.1021/bm900646g
  • Schmidt, B. V. K. J, Hetzer, M, Ritter, H, Barner-Kowollik, C (2013). UV Light and Temperature Responsive Supramolecular ABA Triblock Copolymers via Reversible Cyclodextrin Complexation. Macromolecules 46(3):1054-1065. https://doi.org/10.1021/ma302386w
  • Schmidt, B. V. K. J, Hetzer, M, Ritter, H, Barner-Kowollik, C (2012). Miktoarm star polymers via cyclodextrin-driven supramolecular self-assembly. Polym Chem-Uk 3(11):3064-3067. https://doi.org/10.1039/C2PY20214J
  • Schmidt, B. V. K. J, Rudolph, T, Hetzer, M, Ritter, H, Schacher, F. H, Barner-Kowollik, C (2012). Supramolecular three-armed star polymers via cyclodextrin host–guest self-assembly. Polym Chem-Uk 3(11):3139-3145. https://doi.org/10.1039/C2PY20293J
  • Schmidt, B. V. K. J, Barner-Kowollik, C (2014). Supramolecular X- and H-shaped star block copolymers via cyclodextrin-driven supramolecular self-assembly. Polym Chem-Uk 5(7):2461-2472. https://doi.org/10.1039/C3PY01580G
  • Huan, X, Wang, D, Dong, R, Tu, C, Zhu, B, Yan, D, Zhu, X (2012). Supramolecular ABC Miktoarm Star Terpolymer Based on Host–Guest Inclusion Complexation. Macromolecules 45(15):5941-5947. https://doi.org/10.1021/ma300693h
  • Cakir, N, Hizal, G, Becer C. R (2015). Supramolecular glycopolymers with thermo-responsive self-assembly and lectin binding. Polym Chem-Uk 6 (37):6623-6631. https://doi.org/10.1039/C5PY00939A
  • Durmaz, H, Dag, A, Altintas, O, Erdogan, T, Hizal, G, Tunca, U (2007). One-Pot Synthesis of ABC Type Triblock Copolymers via in situ Click [3 + 2] and Diels−Alder [4 + 2] Reactions. Macromolecules 40 (2): 191-198. https://doi.org/10.1021/ma061819l
  • Cakir, N, Tunca, U, Hizal, G, Durmaz, H (2016). Heterofunctionalized multiarm star polymers via sequential thiol-para-fluoro and thiol-ene double “click” reactions. Macromol Chem Phys 217: 636-645. https://doi.org/10.1002/macp.201500300
  • Cakir Yigit, N, Hizal, G, Tunca, U (2018). A powerful tool for preparing peripherally post-functionalized multiarm star block copolymer. Polym Bull 75:3523–3538. https://doi.org/10.1007/s00289-017-2218-5
There are 28 citations in total.

Details

Primary Language English
Subjects Polymer Science and Technologies
Journal Section Research Articles
Authors

Neşe Çakır Yiğit This is me 0000-0002-4714-4488

Gürkan Hızal This is me 0000-0003-1238-362X

Ümit Tunca This is me 0000-0001-8767-6166

Publication Date January 31, 2022
Submission Date November 13, 2021
Published in Issue Year 2022 Volume: 2 Issue: 1

Cite

APA Çakır Yiğit, N., Hızal, G., & Tunca, Ü. (2022). Synthesis of multiarm star block copolymer based on host-guest inclusion complexation. Journal of Innovative Engineering and Natural Science, 2(1), 1-15. https://doi.org/10.29228/JIENS.54191


by.png
Journal of Innovative Engineering and Natural Science by İdris Karagöz is licensed under CC BY 4.0