Research Article
BibTex RIS Cite

Catching the biogas opportunity: Determining the animal waste-based biogas potential and environmental effects for Sirnak

Year 2024, Volume: 4 Issue: 1, 84 - 97, 31.01.2024
https://doi.org/10.61112/jiens.1356107

Abstract

Anaerobic digestion of renewable feedstocks into biogas is an important technological approach for sustainable and reliable energy supply. Biogas is produced from biomass and is defined as a gaseous energy carrier containing 60% methane and 35-40% carbon dioxide. Although different types of biomass samples can be used for biogas production, the use of animal wastes in biogas production is more preferred than others. The region selected in the study is a city with a significant amount of animal waste production and thus biogas potential due to intensive animal husbandry. In this study, the animal waste potentials that can be produced from cattle, sheep, and poultry in Sirnak province and their effects in terms of biogas equivalents and carbon emissions were analyzed. The results of the study show that a total of 23.445 million m3 year-1 biogas can be produced from animal wastes in Sirnak province from all districts, while total electricity production is 44,238,955.45 kWh year-1. As an environmental impact, it has been determined that total CO2 emission can be 276,356,209.6 kg CO2/year, on the other hand, a reduction in total CO2 emission up to 209,809,869.8 kg CO2/year can be achieved.

References

  • Çalışkan M, Tumen Ozdil NF (2021) Potential of biogas and electricity production from animal waste in Turkey. Bioenergy Res 14:860-869. https://doi.org/10.1007/s12155-020-10193-w
  • Ocak S, Acar S (2021) Biofuels from wastes in Marmara Region, Turkey: potentials and constraints. Environ Sci Pollut Res 28: 66026-66042. https://doi.org/10.1007/s11356-021-15464-3
  • Guo M, Song W, Buhain J (2015) Bioenergy and biofuels: History, status, and perpective. Renewable Sustainable Energy Rev. 42:712-725. https://doi.org/10.1016/j.rser.2014.10.013
  • Gokcol C, Dursun B, Alboyaci B, Sunan E (2009) Importance of biomass energy as alternative to other sources in Turkey. Energy Policy 37: 424-431. https://doi.org/10.1016/j.enpol.2008.09.057
  • Al K (2021) Biyokütle Enerji Santralleri İçin Tarımsal Atıklar: Şanlıurfa İlinde Tarımsal Atık ve Artıkların Değerlendirilmesi. Ulusal Çevre Bilimleri Araştırma Dergisi. 4(2): 67-76.
  • Aybek A, Bilgili ME, Üçok S (2015) Türkiye’de Kullanılabilir Hayvansal Gübre ve Tahıl Sap Atıklarının Biyogaz ve Enerji Potansiyelinin Belirlenerek Sayısal Haritalarının Oluşturulması. Tekirdağ Ziraat Fakültesi Dergisi. 12(03): 109-120.
  • Şenol H, Dereli̇ MA, Özbilgin F (2021) Investigation of the distribution of bovine manure-based biomethane potential using an artificial neural network in Turkey to 2030. Renewable Sustainable Energy Rev. 149:111338. https://doi.org/10.1016/j.rser.2021.111338
  • Mao C, Feng Y, [ X, Ren G (2015) Review on research achievements of biogas from anaerobic digestion. Renewable Sustainable Energy Rev.45:540–555. https://doi.org/10.1016/j.rser.2015.02.032
  • Salvi O, Chaubet C, Evanno S (2012) Improving the safety of biogas production in Europe. Revista de Ingeniería. 37:57–65. https://doi.org/10.16924/revinge.37.9
  • Wang Q, Xia C, Alagumalai K, Le TTN, Yuan Y, Khademi T, Berkani M, Lu, H (2023) Biogas generation from biomass as a cleaner alternative towards a circular bioeconomy: Artificial intelligence, challenges, and future insights. Fuel 333:126456. https://doi.org/10.1016/j.fuel.2022.126456
  • Petravić-Tominac V,Nastav N, Buljubašić M, Šantek B (2020) Current state of biogas production in Croatia. Energy Sust. Soc. 10:8. https://doi.org/10.1186/s13705-020-0243-y
  • Weiland P (2010) Biogas production: Current state and perspectives. Appl. Microbiol. Biotechnol.85(4):849–860. https://doi.org/10.1007/s00253-009- 2246-7
  • Horváth SI, Tabatabaei M, Karimi K, Kumar R (2016) Recent updates on biogas production - a review. Biofuel Res. J.3(2):394-402. http://doi.org/10.18331/BRJ2016.3.2.4
  • Chasnyk O, Sołowski G, Shkarupa O (2015) Historical, technical and economic aspects of biogas development: case of Poland and Ukraine. Renewable Sustainable Energy Rev. 52:227–239. https://doi.org/10.1016/j.rser.2015.07.122
  • Sun Q, Li H, Yan J, Liu L, Yu Z, Yu X (2015) Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and utilisation. Renewable Sustainable Energy Rev. 51:521–532. https://doi.org/10.1016/j.rser.2015.06.029
  • Abdeshahian, P, Lim JS, Ho WS, Hashim H, Lee CT (2016) Potential of biogas production from farm animal waste in Malaysia. Renewable and Sustainable Energy Rev. 60:714-723. https://doi.org/10.1016/j.rser.2016.01.117
  • Kusch S, Morar MV (2009) Integration of lignocellulosic biomass into renewable energy generation concepts. ProEnvironment. 2:32–37.
  • Christy PM, Gopinath LR, Divya D (2014) A review on anaerobic decomposition and enhancement of biogas production through enzymes and microorganisms. Renewable and Sustainable Energy Rev.34:167–173. https://doi.org/10.1016/j.rser.2014.03.010
  • Li J, Wei L, Duan Q, Hu G, Zhang G (2014) Semi-continuous anaerobic co-digestion of dairy manure with three crop residues for biogas production. Bioresour Technol.156:307–13. https://doi.org/10.1016/j.biortech.2014.01.064
  • Kurnuç SA, Badem A (2021) Erzincan ili hayvansal atık kaynaklı biyogaz potansiyelinin değerlendirilmesine yönelik biyogaz tesisi senaryoları. Gümüşhane Üniversitesi Fen Bilimleri Dergisi.11:245-256. https://doi.org/10.17714/gumusfenbil.743724
  • Atelge MR (2021) The Potential of Biogas Productıon as a Biofuel from Cattle Manure in Turkey And Projected Impact on the Reduction of Carbon Emıssıons for 2030 And 2053. International Journal of Innovative Engineering Applications. 5: 57-64. https://doi.org/10.46460/ijiea.923792
  • Nasir IM, Ghazi TIM, Omar R, Idris A (2013) Anaerobic digestion of cattle manure: influence of inoculums concentration. International Journal of Engineering and Technology.10:22–26.
  • Ounnar A, Benhabyles L, Igoud S (2012) Energetic valorization of biomethane produced from cow-dung. Procedia Eng. 33:330–334. https://doi.org/10.1016/j.proeng.2012.01.1211
  • Pence I, Kumaş K, Cesmeli MS et al (2022) Detailed analysis of animal manure-based CO2 emissions, coal, electricity, thermal energy, and CH4 emissions and using machine learning as a forecasting method: a study from Turkey. Research Square. https://doi.org/10.21203/rs.3.rs-1648218/v1
  • Font-Palma C (2019) Methods for the treatment of cattle manure—a review. Journal of Carbon Research. 5(2):27. https://doi.org/10.3390/c5020027
  • Türkiye Cumhuriyeti Tarım ve Orman Bakanlığı Hayvancılık Genel Müdürlüğü (2023) https://www.tarimorman.gov.tr/sgb/Belgeler/SagMenuVeriler/HAYGEM.pdf Access 30 August 2023
  • Yavuz F, Bilgic A,Terin M,Guler IO (2013) Policy implications of trends in Turkey’s meat sector with respect to 2023 vision. Meat Sci. 95:798–804. https://doi.org/10.1016/j.meatsci.2013.03.024
  • Melikoglu M, Menekse ZK (2020) Forecasting Turkey’s cattle and sheep manure based biomethane potentials till 2026. Biomass Bioenergy. 132:105440. https://doi.org/10.1016/j.biombioe.2019.105440
  • Scarlat N, Dallemand JF, Fahl F (2018) Biogas: developments and perspectives in Europe. Renewable. Energy. 129:457–472. https://doi.org/10.1016/j.renene.2018.03.006
  • Erdoğdu AE, Polat R, Özbay G (2019) Pyrolysis of goat manure to produce bio-oil. Engineering Science and Technology an International Journal. 22 :452–457. https://doi.org/10.1016/j.jestch.2018.11.002
  • Aryal N, Kvist T, Ammam F, Pant D, Ottosen LDM (2018) An overview of microbial biogas enrichment. Bioresour. Technol. 264:359–369. https://doi.org/10.1016/j.biortech.2018.06.013
  • Zaidi AA, RuiZhe F,Shi Y,Khan SZ, Mushtaq K (2018) Nanoparticles augmentation on biogas yield from microalgal biomass anaerobic digestion. Int. J. Hydrogen Energy. 43:14202–14213. https://doi.org/10.1016/j.ijhydene.2018.05.132
  • Aksay MV, Tabak A (2022) Mapping of biogas potential of animal and agricultural wastes in Turkey. Biomass Convers. Biorefin. 12(11):5345-5362. https://doi.org/10.1007/s13399-022-02538-6
  • Manna MC, Rahman MM, Naidu R, Sahu A, Bhattacharjya S, Wanjari R, Patra AK, Chaudhari S, Majumdar K, Khanna S (2018) Bio-waste management in subtropical soils of India: future challenges and opportunities in agriculture. Adv. Agron. 152:87–148. https://doi.org/10.1016/bs.agron.2018.07.002
  • Meyer AKP, Ehimen EA, Holm-Nielsen JB (2018) Future European biogas: animal manure, straw and grass potentials for a sustainable European biogas production. Biomass Bioenergy 111:154–164. https://doi.org/10.1016/j.biombioe.2017.05.013
  • Zeng Y, Xiao L, Zhang X, Zhou J, Ji G, Schroeder S,Liu G,Yan Z (2018) Biogas desulfurization under anoxic conditions using synthetic wastewater and biogas slurry. Int. Biodeterior. Biodegrad 133:247–255. https://doi.org/10.1016/j.ibiod.2018.05.012
  • Achinas S, Li Y, Achinas V, Willem Euverink GJ (2018) Influence of sheep manure addition on biogas potential and methanogenic communities during cow dung digestion under mesophilic conditions. Sustainable Environ. Res. 28:240–246. https://doi.org/10.1016/j.serj.2018.03.003
  • Cheng D, Liu Y, Shehata E, et al (2021) In-feed antibiotic use changed the behaviors of oxytetracycline, sulfamerazine, and ciprofloxacin and related antibiotic resistance genes during swine manure composting. J. Hazard. Mater. 402:123710. https://doi.org/10.1016/j.jhazmat.2020.123710
  • Karaaslan A, Gezen M (2022) The evaluation of renewable energy resources in Turkey by integer multi-objective selection problem with interval coe¨cient. Renewable Energy 182:842–854. https://doi.org/10.1016/j.renene.2021.10.053
  • Gündoğan B, Koçar G (2022) Potential Usability of Cynara cardunculus L. Residues in Biogas Production in Various Regions of Turkey. BioEnergy Research 15:1894-1907. https://doi.org/10.1007/s12155-021-10375-0
  • Artun O, Atilgan A, Saltuk B (2016) Determination of the potential biogas energy production amounts and areas in the Tigris Basin using GIS. INFRASTRUKTURA I EKOLOGIA TERENÓW WIEJSKICH INFRASTRUCTURE AND ECOLOGY OF RURAL AREAS 761-771. http://dx.medra.org/10.14597/infraeco.2016.3.1.056
  • Lule F, (2019) Güneydoğu Anadolu Bölgesinin Hayvansal Atıklardan Elde Edilebilecek Enerji Potansiyeli. ÇOMÜ Zirat Fakültesi Dergisi 7 (1): 145–150. https://doi.org/10.33202/comuagri.435371
  • Aydın K, Üren G (2022) Bölüm 12: Şırnak İlinin Hayvansal Yan Ürün Kaynaklı Biyogaz Potansiyelinin Belirlenmesi, In: Baran MF and Çelik A (ed) İklim Değişikliği Ve Tarımda Dönüşüm. Iksad Publications, Turkey, ss 307-320.
  • Ertop H, Atılgan A, Saltuk B, Aksoy E (2022) Büyükbaş Hayvansal Atıklardan Elde Edilebilir Biyogaz ve Elektrik Üretim Potansiyelinin Belirlenerek Sayısal Haritaların Oluşturulması. Avrupa Bilim ve Teknoloji Dergisi (35):530-540. https://doi.org/10.31590/ejosat.1034086
  • Aktaş T, Özer B, Soyak G, Ertürk MC (2015) Tekirdağ İli’nde Hayvansal Atık Kaynaklı Biyogazdan Elektrik Üretim Potansiyelinin Belirlenmesi. Tarım Makinaları Bilimi Dergisi 11:69-74.
  • BEPA Statistics (2022) https://bepa.enerji.gov.tr/ Access 04 August 2023
  • Map of Sirnak province and its districts https://bolge3.tarimorman.gov.tr/Documents/%C5%9EIRNAK.pdf Access date: 08 October 2023
  • Yağlı H, Koç Y (2019) Hayvan Gübresinden Biyogaz Üretim Potansiyelinin Belirlenmesi: Adana İli Örnek Hesaplama. Çukurova Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 34(3): 35-48. https://doi.org/10.21605/cukurovaummfd.637603
  • Avcioğlu AO, Türker U (2012) Status and potential of biogas energy from animal wastes in Turkey. Renewable Sustainable Energy Rev.16: 1557-1561. https://doi.org/10.1016/j.rser.2011.11.006
  • Ekinci K, Kulcu R, Kaya D et al (2010) The prospective of potential biogas plants that can utilize animal manure in Turkey. Energy Explor. Exploit. 28(3): 187-206. https://doi.org/10.1260/0144-5987.28.3.187
  • Khalil M, Berawi MA, Heryanto R, Rizalie A (2019) Waste to energy technology: The potential of sustainable biogas production from animal waste in Indonesia. Renewable Sustainable Energy Rev. 105:323- 331. https://doi.org/10.1016/j.rser.2019.02.011
  • Akyürek Z (2018) Potential of biogas energy from animal waste in the Mediterranean Region of Turkey. Journal of Energy Systems 2:159-167. Turkey. http://doi.org/10.30521/jes.455325
  • Cucchiella F, D’Adamo I, Gastaldi M (2019) An economic analysis of biogas-biomethane chain from animal residues in Italy. J. Cleaner Prod. 230:888–897. https://doi.org/10.1016/j.jclepro.2019.05.116
  • Yenigün İ, Gülşen H, Yenigün A (2021) Mardin ilinin hayvansal atık kaynaklı biyogaz potansiyelinin belirlenmesi. Dicle University Journal of Engineering 12(3): 479-486. https://doi.org/10.24012/dumf.955496
  • Nasir IM, Ghazi TIM, Omar R (2012) Anaerobic digestion technology in livestock manure treatment for biogas production: a review. Eng Life Sci 12:258– 269. http://dx.doi.org/10.1002/elsc.201100150
  • Noorollahi Y, Kheirrouz M, Farabi Asl H, Yousefi H, Hajinezhad A (2015) Biogas production potential from livestock manure in Iran. Renewable Sustainable Energy Rev. 50:748–54. https://doi.org/10.1016/j.rser.2015.04.190

Biyogaz Fırsatını Yakalamak: Şırnak için Hayvansal Atık Bazlı Biyogaz Potansiyelinin ve Çevresel Etkilerinin Belirlenmesi

Year 2024, Volume: 4 Issue: 1, 84 - 97, 31.01.2024
https://doi.org/10.61112/jiens.1356107

Abstract

Yenilenebilir hammaddelerin anaerobik çürütme yoluyla biyogaza dönüştürülmesi, sürdürülebilir ve güvenilir enerji tedariki için önemli bir teknolojik yaklaşımdır. Biyogaz biyokütleden üretilir ve %60 metan ve %35-40 karbondioksit içeren gaz halinde bir enerji taşıyıcısı olarak tanımlanır. Biyogaz üretimi için farklı türde biyokütle örnekleri kullanılabilmekle birlikte, hayvansal atıkların biyogaz üretiminde kullanımı diğerlerine göre daha fazla tercih edilmektedir. Çalışmada seçilen bölge, yoğun hayvancılık nedeniyle önemli miktarda hayvansal atık üretimine ve dolayısıyla biyogaz potansiyeline sahip bir şehirdir. Bu çalışmada, Şırnak ilinde büyükbaş, küçükbaş ve kümes hayvanlarından üretilebilecek hayvansal atık potansiyelleri ve bunların biyogaz eşdeğerleri ve karbon emisyonları açısından etkileri analiz edilmiştir. Çalışma sonuçları, Şırnak ilinde tüm ilçelerdeki hayvansal atıklardan toplam 23,445 milyon m3 yıl-1 biyogaz üretilebileceğini, toplam elektrik üretiminin ise 44.238.955,45 kWh yıl-1 olduğunu göstermektedir. Çevresel etki olarak toplam CO2 emisyonunun 276.356.209,6 kg CO2/yıl olabileceği, diğer yandan toplam CO2 emisyonunda 209.809.869,8 kg CO2/yıl'a kadar azalma sağlanabileceği tespit edilmiştir.

References

  • Çalışkan M, Tumen Ozdil NF (2021) Potential of biogas and electricity production from animal waste in Turkey. Bioenergy Res 14:860-869. https://doi.org/10.1007/s12155-020-10193-w
  • Ocak S, Acar S (2021) Biofuels from wastes in Marmara Region, Turkey: potentials and constraints. Environ Sci Pollut Res 28: 66026-66042. https://doi.org/10.1007/s11356-021-15464-3
  • Guo M, Song W, Buhain J (2015) Bioenergy and biofuels: History, status, and perpective. Renewable Sustainable Energy Rev. 42:712-725. https://doi.org/10.1016/j.rser.2014.10.013
  • Gokcol C, Dursun B, Alboyaci B, Sunan E (2009) Importance of biomass energy as alternative to other sources in Turkey. Energy Policy 37: 424-431. https://doi.org/10.1016/j.enpol.2008.09.057
  • Al K (2021) Biyokütle Enerji Santralleri İçin Tarımsal Atıklar: Şanlıurfa İlinde Tarımsal Atık ve Artıkların Değerlendirilmesi. Ulusal Çevre Bilimleri Araştırma Dergisi. 4(2): 67-76.
  • Aybek A, Bilgili ME, Üçok S (2015) Türkiye’de Kullanılabilir Hayvansal Gübre ve Tahıl Sap Atıklarının Biyogaz ve Enerji Potansiyelinin Belirlenerek Sayısal Haritalarının Oluşturulması. Tekirdağ Ziraat Fakültesi Dergisi. 12(03): 109-120.
  • Şenol H, Dereli̇ MA, Özbilgin F (2021) Investigation of the distribution of bovine manure-based biomethane potential using an artificial neural network in Turkey to 2030. Renewable Sustainable Energy Rev. 149:111338. https://doi.org/10.1016/j.rser.2021.111338
  • Mao C, Feng Y, [ X, Ren G (2015) Review on research achievements of biogas from anaerobic digestion. Renewable Sustainable Energy Rev.45:540–555. https://doi.org/10.1016/j.rser.2015.02.032
  • Salvi O, Chaubet C, Evanno S (2012) Improving the safety of biogas production in Europe. Revista de Ingeniería. 37:57–65. https://doi.org/10.16924/revinge.37.9
  • Wang Q, Xia C, Alagumalai K, Le TTN, Yuan Y, Khademi T, Berkani M, Lu, H (2023) Biogas generation from biomass as a cleaner alternative towards a circular bioeconomy: Artificial intelligence, challenges, and future insights. Fuel 333:126456. https://doi.org/10.1016/j.fuel.2022.126456
  • Petravić-Tominac V,Nastav N, Buljubašić M, Šantek B (2020) Current state of biogas production in Croatia. Energy Sust. Soc. 10:8. https://doi.org/10.1186/s13705-020-0243-y
  • Weiland P (2010) Biogas production: Current state and perspectives. Appl. Microbiol. Biotechnol.85(4):849–860. https://doi.org/10.1007/s00253-009- 2246-7
  • Horváth SI, Tabatabaei M, Karimi K, Kumar R (2016) Recent updates on biogas production - a review. Biofuel Res. J.3(2):394-402. http://doi.org/10.18331/BRJ2016.3.2.4
  • Chasnyk O, Sołowski G, Shkarupa O (2015) Historical, technical and economic aspects of biogas development: case of Poland and Ukraine. Renewable Sustainable Energy Rev. 52:227–239. https://doi.org/10.1016/j.rser.2015.07.122
  • Sun Q, Li H, Yan J, Liu L, Yu Z, Yu X (2015) Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and utilisation. Renewable Sustainable Energy Rev. 51:521–532. https://doi.org/10.1016/j.rser.2015.06.029
  • Abdeshahian, P, Lim JS, Ho WS, Hashim H, Lee CT (2016) Potential of biogas production from farm animal waste in Malaysia. Renewable and Sustainable Energy Rev. 60:714-723. https://doi.org/10.1016/j.rser.2016.01.117
  • Kusch S, Morar MV (2009) Integration of lignocellulosic biomass into renewable energy generation concepts. ProEnvironment. 2:32–37.
  • Christy PM, Gopinath LR, Divya D (2014) A review on anaerobic decomposition and enhancement of biogas production through enzymes and microorganisms. Renewable and Sustainable Energy Rev.34:167–173. https://doi.org/10.1016/j.rser.2014.03.010
  • Li J, Wei L, Duan Q, Hu G, Zhang G (2014) Semi-continuous anaerobic co-digestion of dairy manure with three crop residues for biogas production. Bioresour Technol.156:307–13. https://doi.org/10.1016/j.biortech.2014.01.064
  • Kurnuç SA, Badem A (2021) Erzincan ili hayvansal atık kaynaklı biyogaz potansiyelinin değerlendirilmesine yönelik biyogaz tesisi senaryoları. Gümüşhane Üniversitesi Fen Bilimleri Dergisi.11:245-256. https://doi.org/10.17714/gumusfenbil.743724
  • Atelge MR (2021) The Potential of Biogas Productıon as a Biofuel from Cattle Manure in Turkey And Projected Impact on the Reduction of Carbon Emıssıons for 2030 And 2053. International Journal of Innovative Engineering Applications. 5: 57-64. https://doi.org/10.46460/ijiea.923792
  • Nasir IM, Ghazi TIM, Omar R, Idris A (2013) Anaerobic digestion of cattle manure: influence of inoculums concentration. International Journal of Engineering and Technology.10:22–26.
  • Ounnar A, Benhabyles L, Igoud S (2012) Energetic valorization of biomethane produced from cow-dung. Procedia Eng. 33:330–334. https://doi.org/10.1016/j.proeng.2012.01.1211
  • Pence I, Kumaş K, Cesmeli MS et al (2022) Detailed analysis of animal manure-based CO2 emissions, coal, electricity, thermal energy, and CH4 emissions and using machine learning as a forecasting method: a study from Turkey. Research Square. https://doi.org/10.21203/rs.3.rs-1648218/v1
  • Font-Palma C (2019) Methods for the treatment of cattle manure—a review. Journal of Carbon Research. 5(2):27. https://doi.org/10.3390/c5020027
  • Türkiye Cumhuriyeti Tarım ve Orman Bakanlığı Hayvancılık Genel Müdürlüğü (2023) https://www.tarimorman.gov.tr/sgb/Belgeler/SagMenuVeriler/HAYGEM.pdf Access 30 August 2023
  • Yavuz F, Bilgic A,Terin M,Guler IO (2013) Policy implications of trends in Turkey’s meat sector with respect to 2023 vision. Meat Sci. 95:798–804. https://doi.org/10.1016/j.meatsci.2013.03.024
  • Melikoglu M, Menekse ZK (2020) Forecasting Turkey’s cattle and sheep manure based biomethane potentials till 2026. Biomass Bioenergy. 132:105440. https://doi.org/10.1016/j.biombioe.2019.105440
  • Scarlat N, Dallemand JF, Fahl F (2018) Biogas: developments and perspectives in Europe. Renewable. Energy. 129:457–472. https://doi.org/10.1016/j.renene.2018.03.006
  • Erdoğdu AE, Polat R, Özbay G (2019) Pyrolysis of goat manure to produce bio-oil. Engineering Science and Technology an International Journal. 22 :452–457. https://doi.org/10.1016/j.jestch.2018.11.002
  • Aryal N, Kvist T, Ammam F, Pant D, Ottosen LDM (2018) An overview of microbial biogas enrichment. Bioresour. Technol. 264:359–369. https://doi.org/10.1016/j.biortech.2018.06.013
  • Zaidi AA, RuiZhe F,Shi Y,Khan SZ, Mushtaq K (2018) Nanoparticles augmentation on biogas yield from microalgal biomass anaerobic digestion. Int. J. Hydrogen Energy. 43:14202–14213. https://doi.org/10.1016/j.ijhydene.2018.05.132
  • Aksay MV, Tabak A (2022) Mapping of biogas potential of animal and agricultural wastes in Turkey. Biomass Convers. Biorefin. 12(11):5345-5362. https://doi.org/10.1007/s13399-022-02538-6
  • Manna MC, Rahman MM, Naidu R, Sahu A, Bhattacharjya S, Wanjari R, Patra AK, Chaudhari S, Majumdar K, Khanna S (2018) Bio-waste management in subtropical soils of India: future challenges and opportunities in agriculture. Adv. Agron. 152:87–148. https://doi.org/10.1016/bs.agron.2018.07.002
  • Meyer AKP, Ehimen EA, Holm-Nielsen JB (2018) Future European biogas: animal manure, straw and grass potentials for a sustainable European biogas production. Biomass Bioenergy 111:154–164. https://doi.org/10.1016/j.biombioe.2017.05.013
  • Zeng Y, Xiao L, Zhang X, Zhou J, Ji G, Schroeder S,Liu G,Yan Z (2018) Biogas desulfurization under anoxic conditions using synthetic wastewater and biogas slurry. Int. Biodeterior. Biodegrad 133:247–255. https://doi.org/10.1016/j.ibiod.2018.05.012
  • Achinas S, Li Y, Achinas V, Willem Euverink GJ (2018) Influence of sheep manure addition on biogas potential and methanogenic communities during cow dung digestion under mesophilic conditions. Sustainable Environ. Res. 28:240–246. https://doi.org/10.1016/j.serj.2018.03.003
  • Cheng D, Liu Y, Shehata E, et al (2021) In-feed antibiotic use changed the behaviors of oxytetracycline, sulfamerazine, and ciprofloxacin and related antibiotic resistance genes during swine manure composting. J. Hazard. Mater. 402:123710. https://doi.org/10.1016/j.jhazmat.2020.123710
  • Karaaslan A, Gezen M (2022) The evaluation of renewable energy resources in Turkey by integer multi-objective selection problem with interval coe¨cient. Renewable Energy 182:842–854. https://doi.org/10.1016/j.renene.2021.10.053
  • Gündoğan B, Koçar G (2022) Potential Usability of Cynara cardunculus L. Residues in Biogas Production in Various Regions of Turkey. BioEnergy Research 15:1894-1907. https://doi.org/10.1007/s12155-021-10375-0
  • Artun O, Atilgan A, Saltuk B (2016) Determination of the potential biogas energy production amounts and areas in the Tigris Basin using GIS. INFRASTRUKTURA I EKOLOGIA TERENÓW WIEJSKICH INFRASTRUCTURE AND ECOLOGY OF RURAL AREAS 761-771. http://dx.medra.org/10.14597/infraeco.2016.3.1.056
  • Lule F, (2019) Güneydoğu Anadolu Bölgesinin Hayvansal Atıklardan Elde Edilebilecek Enerji Potansiyeli. ÇOMÜ Zirat Fakültesi Dergisi 7 (1): 145–150. https://doi.org/10.33202/comuagri.435371
  • Aydın K, Üren G (2022) Bölüm 12: Şırnak İlinin Hayvansal Yan Ürün Kaynaklı Biyogaz Potansiyelinin Belirlenmesi, In: Baran MF and Çelik A (ed) İklim Değişikliği Ve Tarımda Dönüşüm. Iksad Publications, Turkey, ss 307-320.
  • Ertop H, Atılgan A, Saltuk B, Aksoy E (2022) Büyükbaş Hayvansal Atıklardan Elde Edilebilir Biyogaz ve Elektrik Üretim Potansiyelinin Belirlenerek Sayısal Haritaların Oluşturulması. Avrupa Bilim ve Teknoloji Dergisi (35):530-540. https://doi.org/10.31590/ejosat.1034086
  • Aktaş T, Özer B, Soyak G, Ertürk MC (2015) Tekirdağ İli’nde Hayvansal Atık Kaynaklı Biyogazdan Elektrik Üretim Potansiyelinin Belirlenmesi. Tarım Makinaları Bilimi Dergisi 11:69-74.
  • BEPA Statistics (2022) https://bepa.enerji.gov.tr/ Access 04 August 2023
  • Map of Sirnak province and its districts https://bolge3.tarimorman.gov.tr/Documents/%C5%9EIRNAK.pdf Access date: 08 October 2023
  • Yağlı H, Koç Y (2019) Hayvan Gübresinden Biyogaz Üretim Potansiyelinin Belirlenmesi: Adana İli Örnek Hesaplama. Çukurova Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 34(3): 35-48. https://doi.org/10.21605/cukurovaummfd.637603
  • Avcioğlu AO, Türker U (2012) Status and potential of biogas energy from animal wastes in Turkey. Renewable Sustainable Energy Rev.16: 1557-1561. https://doi.org/10.1016/j.rser.2011.11.006
  • Ekinci K, Kulcu R, Kaya D et al (2010) The prospective of potential biogas plants that can utilize animal manure in Turkey. Energy Explor. Exploit. 28(3): 187-206. https://doi.org/10.1260/0144-5987.28.3.187
  • Khalil M, Berawi MA, Heryanto R, Rizalie A (2019) Waste to energy technology: The potential of sustainable biogas production from animal waste in Indonesia. Renewable Sustainable Energy Rev. 105:323- 331. https://doi.org/10.1016/j.rser.2019.02.011
  • Akyürek Z (2018) Potential of biogas energy from animal waste in the Mediterranean Region of Turkey. Journal of Energy Systems 2:159-167. Turkey. http://doi.org/10.30521/jes.455325
  • Cucchiella F, D’Adamo I, Gastaldi M (2019) An economic analysis of biogas-biomethane chain from animal residues in Italy. J. Cleaner Prod. 230:888–897. https://doi.org/10.1016/j.jclepro.2019.05.116
  • Yenigün İ, Gülşen H, Yenigün A (2021) Mardin ilinin hayvansal atık kaynaklı biyogaz potansiyelinin belirlenmesi. Dicle University Journal of Engineering 12(3): 479-486. https://doi.org/10.24012/dumf.955496
  • Nasir IM, Ghazi TIM, Omar R (2012) Anaerobic digestion technology in livestock manure treatment for biogas production: a review. Eng Life Sci 12:258– 269. http://dx.doi.org/10.1002/elsc.201100150
  • Noorollahi Y, Kheirrouz M, Farabi Asl H, Yousefi H, Hajinezhad A (2015) Biogas production potential from livestock manure in Iran. Renewable Sustainable Energy Rev. 50:748–54. https://doi.org/10.1016/j.rser.2015.04.190
There are 56 citations in total.

Details

Primary Language English
Subjects Electrical Energy Generation (Incl. Renewables, Excl. Photovoltaics), Environmental and Sustainable Processes, Chemical and Thermal Processes in Energy and Combustion
Journal Section Research Articles
Authors

Dilek Gündüz 0009-0001-4160-1342

Ezgi Bayrakdar Ateş 0000-0001-7306-8733

Publication Date January 31, 2024
Submission Date September 6, 2023
Published in Issue Year 2024 Volume: 4 Issue: 1

Cite

APA Gündüz, D., & Bayrakdar Ateş, E. (2024). Catching the biogas opportunity: Determining the animal waste-based biogas potential and environmental effects for Sirnak. Journal of Innovative Engineering and Natural Science, 4(1), 84-97. https://doi.org/10.61112/jiens.1356107


by.png
Journal of Innovative Engineering and Natural Science by İdris Karagöz is licensed under CC BY 4.0