Research Article
BibTex RIS Cite

Oleik asit/nişasta/grafit temelli kompozit faz değiştiren malzemelerin hazırlanması ve ısıl özelliklerinin incelenmesi

Year 2024, Volume: 4 Issue: 1, 59 - 72, 31.01.2024
https://doi.org/10.61112/jiens.1364286

Abstract

Faz Değiştiren Malzemeler (FDM’ler), faz değişimi esnasında görülen donma ve erime süreçleri boyunca ısıl enerjinin gizli ısı formunda depolanmasına ve salınmasına izin veren akıllı malzemelerdir. Bu çalışmada, ısıl enerji depolama uygulamalarında kullanılmak üzere oleik asit/nişasta temelli kompozit faz değiştiren malzemeler (OA/St) dondurarak kurutma tekniği ile üretilmiş ve karakterize edilmiştir. Ek olarak, ısı transfer hızını iyileştirmek amacıyla yüksek ısıl iletkenliğe sahip genleştirilmiş grafit varlığında benzer örnekler (OA/St/%1GF) hazırlanmıştır. Elde edilen kompozit FDM’lerin; Taramalı Elektron Mikroskobu (SEM), Fourier Dönüşümlü Kızılötesi (FT-IR) ve Diferansiyel Taramalı Kalorimetre (DSC) ile gerçekleştirilen morfolojik, kimyasal ve ısıl karakterizasyon teknikleriyle özellikleri incelenmiştir. Elde edilen OA/St kompozit FDM’nin ısıl enerji depolama kapasitesi 18,23 kJ/kg, erime ve kristalizasyon pik sıcaklıkları sırasıyla, 5,83 °C ve -8,10 °C olarak bulunmuştur. OA/St/%1GF Kompozit FDM’nin ise bu özellikleri sırasıyla; 18,54 kJ/kg, 5,66 °C ve -8,15 °C olarak belirlenmiştir. Buna ilaveten, elde edilen kompozitlerin ısıl davranışları Sıcaklık-Kayıt (T-Kayıt) yöntemiyle araştırılmış ve bir ısıl özellikler analiz cihazı kullanılarak ısıl iletkenlikleri ölçülmüştür. Sonuç olarak, elde edilen bulgular temelinde, hazırlanan kompozit FDM’lerin başta tarımsal seralarda don olaylarının önlenmesi, gıda ve medikal soğuk depolama uygulamaları gibi çok çeşitli pratik uygulama alanlarında ortam sıcaklık gereksinimlerinin karşılanmasında uygun birer aday olarak kullanılabileceği değerlendirilmiştir.

Supporting Institution

Yalova Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Project Number

2020/AP/0010

Thanks

Bu çalışmanın gerçekleştirilmesinde destek sağlayan (Proje No: 2020/AP/0010) Yalova Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi’ne teşekkür ederiz.

References

  • Huang X, Zhu C, Lin Y, Fang G (2019) Thermal properties and applications of microencapsulated PCM for thermal energy storage: A review. Applied Thermal Engineering. 147:841-855. https://doi.org/10.1016/j.applthermaleng.2018.11.007
  • Mert MS, Mert HH, Sert M (2019) Investigation of thermal energy storage properties of a microencapsulated phase change material using response surface experimental design methodology. Applied Thermal Engineering, 149:401-413. https://doi.org/10.1016/j.applthermaleng.2018.12.064
  • Rathore PKS, Shukla SK (2021) Enhanced thermophysical properties of organic PCM through shape stabilization for thermal energy storage in buildings: A state of the art review. Energy and Buildings, 236:110799. https://doi.org/10.1016/j.enbuild.2021.110799
  • Mert HH, Mert MS (2022) Design of n-octadecane-based form-stable composite phase change materials embedded in porous nano alumina for thermal energy storage applications. Journal of Thermal Analysis and Calorimetry 147:4925–4934. https://doi.org/10.1007/s10973-021-10886-0
  • Rodríguez-Cumplido F, Pabón-Gelves E, Chejne-Jana F (2019) Recent developments in the synthesis of microencapsulated and nanoencapsulated phase change materials. Journal of Energy Storage, 24:100821. https://doi.org/10.1016/j.est.2019.100821
  • Chinnasamy V, Heo J, Jung S, Lee H, Cho H (2023) Shape stabilized phase change materials based on different support structures for thermal energy storage applications–A review. Energy, 262:125463, https://doi.org/10.1016/j.energy.2022.125463
  • Lashgari S, Arabi H, Mahdavian AR, Ambrogi V (2017) Thermal and morphological studies on novel PCM microcapsules containing n-hexadecane as the core in a flexible Shell. Applied Energy, 190:612-622, https://doi.org/10.1016/j.apenergy.2016.12.158
  • Xing J, Zhou Y, Yang K, Chang J, Yu Y, Cai L, Shi SQ, Huang Z (2021) Microencapsulation of fatty acid eutectic with polyvinyl chloride shell used for thermal energy storage. Journal of Energy Storage, 34:101998. https://doi.org/10.1016/j.est.2020.101998
  • Chen DZ, Qin SY, Tsui GCP, Tang CY, Ouyang X, Liu JH, Tang JN, Zuo JD (2019) Fabrication, morphology and thermal properties of octadecylamine-grafted graphene oxide-modified phase-change microcapsules for thermal energy storage. Composites Part B: Engineering, 157:239-247. https://doi.org/10.1016/j.compositesb.2018.08.066
  • Liu H, Wang X, Wu D, Ji S (2019) Fabrication and applications of dual-responsive microencapsulated phase change material with enhanced solar energy-storage and solar photocatalytic effectiveness. Solar Energy Materials and Solar Cells, 193:184-197, https://doi.org/10.1016/j.solmat.2019.01.012
  • Yuan H, Bai H, Zhang X, Zhang J, Zhang Z, Yang L (2018) Synthesis and characterization of stearic acid/silicon dioxide nanoencapsules for solar energy storage. Solar Energy, 173:42-52. https://doi.org/10.1016/j.solener.2018.07.049
  • Yu S, Wang X, Wu D (2014) Microencapsulation of n-octadecane phase change material with calcium carbonate shell for enhancement of thermal conductivity and serving durability: Synthesis, microstructure, and performance evaluation. Applied Energy, 114:632-643. https://doi.org/10.1016/j.apenergy.2013.10.029
  • Wei H, Li X (2017) Preparation and characterization of a lauric-myristic-stearic acid/Al2O3-loaded expanded vermiculite composite phase change material with enhanced thermal conductivity. Solar Energy Materials and Solar Cells, 166:1-8. https://doi.org/10.1016/j.solmat.2017.03.003
  • Sheng N, Zhu C, Rao Z (2021) Solution combustion synthesized copper foams for enhancing the thermal transfer properties of phase change material. Journal of Alloys and Compounds, 871:159458. https://doi.org/10.1016/j.jallcom.2021.159458
  • Huang X, Lin Y, Alva G, Fang G (2017) Thermal properties and thermal conductivity enhancement of composite phase change materials using myristyl alcohol/metal foam for solar thermal storage. Solar Energy Materials and Solar Cells, 170:68-76. https://doi.org/10.1016/j.solmat.2017.05.059
  • Ma Z, Jiang Q, Lv W, Song Z (2021) Novel phase separation method for the microencapsulation of oxalic acid dihydrate/boric acid eutectic system in a hybrid polymer shell for thermal energy storage. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 628:127369. https://doi.org/10.1016/j.colsurfa.2021.127369
  • Jiang B, Wang X, Wu D (2017) Fabrication of microencapsulated phase change materials with TiO2/Fe3O4 hybrid shell as thermoregulatory enzyme carriers: A novel design of applied energy microsystem for bioapplications. Applied Energy, 201:20-33. https://doi.org/10.1016/j.apenergy.2017.05.093
  • Wang H, Zhao L, Chen L, Song G, Tang G (2017) Facile and low energy consumption synthesis of microencapsulated phase change materials with hybrid shell for thermal energy storage. Journal of Physics and Chemistry of Solids, 111:207-213. https://doi.org/10.1016/j.jpcs.2017.08.002
  • Gamage A, Liyanapathiranage A, Manamperi A, Gunathilake C, Mani S, Merah O, Madhujith T (2022) Applications of Starch Biopolymers for a Sustainable Modern Agriculture. Sustainability 14:6085. https://doi.org/10.3390/su14106085
  • Vox G, Teitel M, Pardossi A, Minuto A, Tinivella F, Schettini E (2010) Sustainable greenhouse systems. In Sustainable Agriculture: Technology, Planning and Management; Salazar, A., Rios, I (Ed). Nova Science Publishers, New York, pp 1-78.
  • Jiang L, Wang RZ, Roskilly AP (2019) Development and thermal characteristics of a novel composite oleic acid for cold storage. International Journal of Refrigeration, 100:55-62, https://doi.org/10.1016/j.ijrefrig.2019.01.025
  • Dinesh R, Hussain SI, Roseline AA, Kalaiselvam S (2021) Experimental investigation on heat transfer behavior of the novel ternary eutectic PCM embedded with MWCNT for thermal energy storage systems. Journal of Thermal Analysis and Calorimetry 145:2935–2949. https://doi.org/10.1007/s10973-020-09726-4
  • Suzuki M, Ogaki T, Sato K (1985) Crystallization and transformation mechanisms of α, β and γ-polymorphs of ultra-pure oleic acid. Journal of the American Oil Chemists’ Society 62:1600-1604. https://doi.org/10.1007/BF02541697
  • Inoue T, Hisatsugu Y, Suzuki M, Wang Z, Zheng L (2004) Solid–liquid phase behavior of binary fatty acid mixtures: 3. Mixtures of oleic acid with capric acid (decanoic acid) and caprylic acid (octanoic acid). Chemistry and Physics of Lipids, 132(2):225-234. https://doi.org/10.1016/j.chemphyslip.2004.07.004.
  • Cedeño FO, Prieto MM, Huidobro JA (2000) Measurements and Estimate of Heat Capacity for Some Pure Fatty Acids and Their Binary and Ternary Mixtures. Journal of Chemical and Engineering Data 45:64-69. https://doi.org/10.1021/je990164z
  • Inoue T, Hisatsugu Y, Ishikawa R, Suzuki M (2004) Solid–liquid phase behavior of binary fatty acid mixtures: 2. Mixtures of oleic acid with lauric acid, myristic acid, and palmitic acid. Chemistry and Physics of Lipids, 127(2):161-173. https://doi.org/10.1016/j.chemphyslip.2003.10.013
  • Harikrishnan S, Kalaiselvam S (2012) Preparation and thermal characteristics of CuO–oleic acid nanofluids as a phase change material, Thermochimica Acta, Volume 533:46-55. https://doi.org/10.1016/j.tca.2012.01.018
  • Cedeño FO, Prieto MM, Espina A, Garcı́a JR (2001) Measurements of temperature and melting heat of some pure fatty acids and their binary and ternary mixtures by differential scanning calorimetry. Thermochimica Acta, 369(1–2):39-50. https://doi.org/10.1016/S0040-6031(00)00752-8
  • Li B, Liu T, Hu L, Wang Y, Gao L (2013) Fabrication and properties of microencapsulated paraffin@ SiO2 phase change composite for thermal energy storage. ACS Sustain Chem Eng. 1(3):374–80. https://doi.org/10.1021/sc300082m
  • Bartošová A, Soldán M, Sirotiak M, Blinová L, Michaliková A (2013) Application of FTIR-ATR spectroscopy for determination of glucose in hydrolysates of selected starches. Research Papers Faculty of Materials Science and Technology Slovak University of Technology, 21(Special-Issue):116-121. https://doi.org/10.2478/rput-2013-0019
  • Iizuka K, Aishima T (1999) Starch gelation process observed by FT‐IR/ATR spectrometry with multivariate data analysis. Journal of food science, 64(4), 653-658. https://doi.org/10.1111/j.1365-2621.1999.tb15104.x
  • Yu P, Cui B, Shi Q (2008) Preparation and characterization of BaTiO3 powders and ceramics by sol–gel process using oleic acid as surfactant. Materials Science and Engineering: A, 473(1–2):34-41. https://doi.org/10.1016/j.msea.2007.03.051
  • Aliakbari A, Seifi M, Mirzaee S, Hekmatara H (2015) Influence of different synthesis conditions on properties of oleic acid-coated-Fe3O4 nanoparticles. Materials Science-Poland, 33(1):100-106. https://doi.org/10.1515/msp-2015-0027
  • Ibarra J, Melendres J, Almada M, Burboa MG, Taboada P, Juárez J, Valdez MA (2015) Synthesis and characterization of magnetite/PLGA/chitosan nanoparticles. Materials Research Express 2(9):095010. http://dx.doi.org/10.1088/2053-1591/2/9/095010
  • Premaratne WAPJ, Priyadarshana WMGI, Gunawardena SHP, De Alwis AAP (2013) Synthesis of Nanosilica from Paddy Husk Ash and Their Surface Functionalization. Journal of Science, University of Kelaniya 8:33-48. http://dx.doi.org/10.4038/josuk.v8i0.7238
  • Nicholas AF, Hussein MZ, Zainal Z, Khadiran T (2018). Palm kernel shell activated carbon as an inorganic framework for shape-stabilized phase change material. Nanomaterials, 8(9):689. https://doi.org/10.3390/nano8090689
  • Li Y, Zhao L, Wang H, Li B (2019) Synthesis of novel shape-stabilized phase change materials with high latent heat and low supercooling degree for thermal energy storage. Journal of Materials Research 34(19):3263-3270. https://doi.org/10.1557/jmr.2019.97
  • Shuo Zhang, Jian-Yong Wu, Chi-Tat Tse, Jianlei Niu, Effective dispersion of multi-wall carbon nano-tubes in hexadecane through physiochemical modification and decrease of supercooling, Solar Energy Materials and Solar Cells, Volume 96, 2012, Pages 124-130, https://doi.org/10.1016/j.solmat.2011.09.032.
  • Parameshwaran, R., Jayavel, R. & Kalaiselvam, S. Study on thermal properties of organic ester phase-change material embedded with silver nanoparticles. Journal of Thermal Analysis and Calorimetry 114, 845–858 (2013). https://doi.org/10.1007/s10973-013-3064-9.

Preparation of oleic acid/starch/graphite based composite phase change materials and investigation of their thermal properties

Year 2024, Volume: 4 Issue: 1, 59 - 72, 31.01.2024
https://doi.org/10.61112/jiens.1364286

Abstract

Phase change materials (PCMs) are smart materials that allow thermal energy to be stored and released in the form of latent heat during the freezing and melting processes seen during phase change. In this study, oleic acid/starch based composite phase change materials (OA/St) were produced by freeze drying technique and characterized with the aim of using in thermal energy storage applications. In addition, similar samples (OA/St/1%GF) were prepared in the presence of expanded graphite with high thermal conductivity in order to improve the heat transfer rate. The properties of obtained composite PCMs were investigated by morphological, chemical and thermal characterization techniques performed with Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FT-IR) and Differential Scanning Calorimetry (DSC). The thermal energy storage capacity of the obtained OA/St composite PCM was found to be 18.23 kJ/kg and the melting and crystallization peak temperatures were found to be 5.83 °C and -8.10 °C, respectively. These thermal characteristics of OA/St/1GF composite PCM are respectively; It was determined as 18.54 kJ/kg, 5.66 °C and -8.15 °C. Additionally, the thermal behaviors of the obtained composites were investigated by the Temperature-History (T-History) method and their thermal conductivities were measured by using a thermal properties analyzer. As a consequence, based on the findings obtained, it has been evaluated that the prepared composite PCMs can be used as suitable candidates to meet the ambient temperature requirements in a wide variety of practical application areas, such as preventing frost in agricultural greenhouses, food and medical cold storage applications.

Supporting Institution

Yalova Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Project Number

2020/AP/0010

Thanks

Bu çalışmanın gerçekleştirilmesinde destek sağlayan (Proje No: 2020/AP/0010) Yalova Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi’ne teşekkür ederiz.

References

  • Huang X, Zhu C, Lin Y, Fang G (2019) Thermal properties and applications of microencapsulated PCM for thermal energy storage: A review. Applied Thermal Engineering. 147:841-855. https://doi.org/10.1016/j.applthermaleng.2018.11.007
  • Mert MS, Mert HH, Sert M (2019) Investigation of thermal energy storage properties of a microencapsulated phase change material using response surface experimental design methodology. Applied Thermal Engineering, 149:401-413. https://doi.org/10.1016/j.applthermaleng.2018.12.064
  • Rathore PKS, Shukla SK (2021) Enhanced thermophysical properties of organic PCM through shape stabilization for thermal energy storage in buildings: A state of the art review. Energy and Buildings, 236:110799. https://doi.org/10.1016/j.enbuild.2021.110799
  • Mert HH, Mert MS (2022) Design of n-octadecane-based form-stable composite phase change materials embedded in porous nano alumina for thermal energy storage applications. Journal of Thermal Analysis and Calorimetry 147:4925–4934. https://doi.org/10.1007/s10973-021-10886-0
  • Rodríguez-Cumplido F, Pabón-Gelves E, Chejne-Jana F (2019) Recent developments in the synthesis of microencapsulated and nanoencapsulated phase change materials. Journal of Energy Storage, 24:100821. https://doi.org/10.1016/j.est.2019.100821
  • Chinnasamy V, Heo J, Jung S, Lee H, Cho H (2023) Shape stabilized phase change materials based on different support structures for thermal energy storage applications–A review. Energy, 262:125463, https://doi.org/10.1016/j.energy.2022.125463
  • Lashgari S, Arabi H, Mahdavian AR, Ambrogi V (2017) Thermal and morphological studies on novel PCM microcapsules containing n-hexadecane as the core in a flexible Shell. Applied Energy, 190:612-622, https://doi.org/10.1016/j.apenergy.2016.12.158
  • Xing J, Zhou Y, Yang K, Chang J, Yu Y, Cai L, Shi SQ, Huang Z (2021) Microencapsulation of fatty acid eutectic with polyvinyl chloride shell used for thermal energy storage. Journal of Energy Storage, 34:101998. https://doi.org/10.1016/j.est.2020.101998
  • Chen DZ, Qin SY, Tsui GCP, Tang CY, Ouyang X, Liu JH, Tang JN, Zuo JD (2019) Fabrication, morphology and thermal properties of octadecylamine-grafted graphene oxide-modified phase-change microcapsules for thermal energy storage. Composites Part B: Engineering, 157:239-247. https://doi.org/10.1016/j.compositesb.2018.08.066
  • Liu H, Wang X, Wu D, Ji S (2019) Fabrication and applications of dual-responsive microencapsulated phase change material with enhanced solar energy-storage and solar photocatalytic effectiveness. Solar Energy Materials and Solar Cells, 193:184-197, https://doi.org/10.1016/j.solmat.2019.01.012
  • Yuan H, Bai H, Zhang X, Zhang J, Zhang Z, Yang L (2018) Synthesis and characterization of stearic acid/silicon dioxide nanoencapsules for solar energy storage. Solar Energy, 173:42-52. https://doi.org/10.1016/j.solener.2018.07.049
  • Yu S, Wang X, Wu D (2014) Microencapsulation of n-octadecane phase change material with calcium carbonate shell for enhancement of thermal conductivity and serving durability: Synthesis, microstructure, and performance evaluation. Applied Energy, 114:632-643. https://doi.org/10.1016/j.apenergy.2013.10.029
  • Wei H, Li X (2017) Preparation and characterization of a lauric-myristic-stearic acid/Al2O3-loaded expanded vermiculite composite phase change material with enhanced thermal conductivity. Solar Energy Materials and Solar Cells, 166:1-8. https://doi.org/10.1016/j.solmat.2017.03.003
  • Sheng N, Zhu C, Rao Z (2021) Solution combustion synthesized copper foams for enhancing the thermal transfer properties of phase change material. Journal of Alloys and Compounds, 871:159458. https://doi.org/10.1016/j.jallcom.2021.159458
  • Huang X, Lin Y, Alva G, Fang G (2017) Thermal properties and thermal conductivity enhancement of composite phase change materials using myristyl alcohol/metal foam for solar thermal storage. Solar Energy Materials and Solar Cells, 170:68-76. https://doi.org/10.1016/j.solmat.2017.05.059
  • Ma Z, Jiang Q, Lv W, Song Z (2021) Novel phase separation method for the microencapsulation of oxalic acid dihydrate/boric acid eutectic system in a hybrid polymer shell for thermal energy storage. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 628:127369. https://doi.org/10.1016/j.colsurfa.2021.127369
  • Jiang B, Wang X, Wu D (2017) Fabrication of microencapsulated phase change materials with TiO2/Fe3O4 hybrid shell as thermoregulatory enzyme carriers: A novel design of applied energy microsystem for bioapplications. Applied Energy, 201:20-33. https://doi.org/10.1016/j.apenergy.2017.05.093
  • Wang H, Zhao L, Chen L, Song G, Tang G (2017) Facile and low energy consumption synthesis of microencapsulated phase change materials with hybrid shell for thermal energy storage. Journal of Physics and Chemistry of Solids, 111:207-213. https://doi.org/10.1016/j.jpcs.2017.08.002
  • Gamage A, Liyanapathiranage A, Manamperi A, Gunathilake C, Mani S, Merah O, Madhujith T (2022) Applications of Starch Biopolymers for a Sustainable Modern Agriculture. Sustainability 14:6085. https://doi.org/10.3390/su14106085
  • Vox G, Teitel M, Pardossi A, Minuto A, Tinivella F, Schettini E (2010) Sustainable greenhouse systems. In Sustainable Agriculture: Technology, Planning and Management; Salazar, A., Rios, I (Ed). Nova Science Publishers, New York, pp 1-78.
  • Jiang L, Wang RZ, Roskilly AP (2019) Development and thermal characteristics of a novel composite oleic acid for cold storage. International Journal of Refrigeration, 100:55-62, https://doi.org/10.1016/j.ijrefrig.2019.01.025
  • Dinesh R, Hussain SI, Roseline AA, Kalaiselvam S (2021) Experimental investigation on heat transfer behavior of the novel ternary eutectic PCM embedded with MWCNT for thermal energy storage systems. Journal of Thermal Analysis and Calorimetry 145:2935–2949. https://doi.org/10.1007/s10973-020-09726-4
  • Suzuki M, Ogaki T, Sato K (1985) Crystallization and transformation mechanisms of α, β and γ-polymorphs of ultra-pure oleic acid. Journal of the American Oil Chemists’ Society 62:1600-1604. https://doi.org/10.1007/BF02541697
  • Inoue T, Hisatsugu Y, Suzuki M, Wang Z, Zheng L (2004) Solid–liquid phase behavior of binary fatty acid mixtures: 3. Mixtures of oleic acid with capric acid (decanoic acid) and caprylic acid (octanoic acid). Chemistry and Physics of Lipids, 132(2):225-234. https://doi.org/10.1016/j.chemphyslip.2004.07.004.
  • Cedeño FO, Prieto MM, Huidobro JA (2000) Measurements and Estimate of Heat Capacity for Some Pure Fatty Acids and Their Binary and Ternary Mixtures. Journal of Chemical and Engineering Data 45:64-69. https://doi.org/10.1021/je990164z
  • Inoue T, Hisatsugu Y, Ishikawa R, Suzuki M (2004) Solid–liquid phase behavior of binary fatty acid mixtures: 2. Mixtures of oleic acid with lauric acid, myristic acid, and palmitic acid. Chemistry and Physics of Lipids, 127(2):161-173. https://doi.org/10.1016/j.chemphyslip.2003.10.013
  • Harikrishnan S, Kalaiselvam S (2012) Preparation and thermal characteristics of CuO–oleic acid nanofluids as a phase change material, Thermochimica Acta, Volume 533:46-55. https://doi.org/10.1016/j.tca.2012.01.018
  • Cedeño FO, Prieto MM, Espina A, Garcı́a JR (2001) Measurements of temperature and melting heat of some pure fatty acids and their binary and ternary mixtures by differential scanning calorimetry. Thermochimica Acta, 369(1–2):39-50. https://doi.org/10.1016/S0040-6031(00)00752-8
  • Li B, Liu T, Hu L, Wang Y, Gao L (2013) Fabrication and properties of microencapsulated paraffin@ SiO2 phase change composite for thermal energy storage. ACS Sustain Chem Eng. 1(3):374–80. https://doi.org/10.1021/sc300082m
  • Bartošová A, Soldán M, Sirotiak M, Blinová L, Michaliková A (2013) Application of FTIR-ATR spectroscopy for determination of glucose in hydrolysates of selected starches. Research Papers Faculty of Materials Science and Technology Slovak University of Technology, 21(Special-Issue):116-121. https://doi.org/10.2478/rput-2013-0019
  • Iizuka K, Aishima T (1999) Starch gelation process observed by FT‐IR/ATR spectrometry with multivariate data analysis. Journal of food science, 64(4), 653-658. https://doi.org/10.1111/j.1365-2621.1999.tb15104.x
  • Yu P, Cui B, Shi Q (2008) Preparation and characterization of BaTiO3 powders and ceramics by sol–gel process using oleic acid as surfactant. Materials Science and Engineering: A, 473(1–2):34-41. https://doi.org/10.1016/j.msea.2007.03.051
  • Aliakbari A, Seifi M, Mirzaee S, Hekmatara H (2015) Influence of different synthesis conditions on properties of oleic acid-coated-Fe3O4 nanoparticles. Materials Science-Poland, 33(1):100-106. https://doi.org/10.1515/msp-2015-0027
  • Ibarra J, Melendres J, Almada M, Burboa MG, Taboada P, Juárez J, Valdez MA (2015) Synthesis and characterization of magnetite/PLGA/chitosan nanoparticles. Materials Research Express 2(9):095010. http://dx.doi.org/10.1088/2053-1591/2/9/095010
  • Premaratne WAPJ, Priyadarshana WMGI, Gunawardena SHP, De Alwis AAP (2013) Synthesis of Nanosilica from Paddy Husk Ash and Their Surface Functionalization. Journal of Science, University of Kelaniya 8:33-48. http://dx.doi.org/10.4038/josuk.v8i0.7238
  • Nicholas AF, Hussein MZ, Zainal Z, Khadiran T (2018). Palm kernel shell activated carbon as an inorganic framework for shape-stabilized phase change material. Nanomaterials, 8(9):689. https://doi.org/10.3390/nano8090689
  • Li Y, Zhao L, Wang H, Li B (2019) Synthesis of novel shape-stabilized phase change materials with high latent heat and low supercooling degree for thermal energy storage. Journal of Materials Research 34(19):3263-3270. https://doi.org/10.1557/jmr.2019.97
  • Shuo Zhang, Jian-Yong Wu, Chi-Tat Tse, Jianlei Niu, Effective dispersion of multi-wall carbon nano-tubes in hexadecane through physiochemical modification and decrease of supercooling, Solar Energy Materials and Solar Cells, Volume 96, 2012, Pages 124-130, https://doi.org/10.1016/j.solmat.2011.09.032.
  • Parameshwaran, R., Jayavel, R. & Kalaiselvam, S. Study on thermal properties of organic ester phase-change material embedded with silver nanoparticles. Journal of Thermal Analysis and Calorimetry 114, 845–858 (2013). https://doi.org/10.1007/s10973-013-3064-9.
There are 39 citations in total.

Details

Primary Language Turkish
Subjects Materials Science and Technologies, Energy Generation, Conversion and Storage (Excl. Chemical and Electrical)
Journal Section Research Articles
Authors

Mehmet Selçuk Mert 0000-0002-8646-0133

Hatice Hande Mert 0000-0003-0743-1981

Sude Yaldız This is me 0000-0002-6936-4705

Fikret Yüksel 0000-0002-3670-4355

Project Number 2020/AP/0010
Publication Date January 31, 2024
Submission Date May 5, 2023
Published in Issue Year 2024 Volume: 4 Issue: 1

Cite

APA Mert, M. S., Mert, H. H., Yaldız, S., Yüksel, F. (2024). Oleik asit/nişasta/grafit temelli kompozit faz değiştiren malzemelerin hazırlanması ve ısıl özelliklerinin incelenmesi. Journal of Innovative Engineering and Natural Science, 4(1), 59-72. https://doi.org/10.61112/jiens.1364286


by.png
Journal of Innovative Engineering and Natural Science by İdris Karagöz is licensed under CC BY 4.0