Katmanlı ve bimodal nanolifli yapılarla filtrasyon performansının artırılması
Year 2024,
Volume: 4 Issue: 1, 220 - 231, 31.01.2024
Ali Toptaş
,
Ali Kılıç
,
Ali Demir
Abstract
Parçacık madde (PM), insan sağlığı için ciddi bir tehdit olduğu için havadan uzaklaştırılmalıdır. Bu partikülleri filtrelemek için genellikle mikro ve/veya nanoporlu dokusuz kumaşlar kullanılır. Çalışmamızda, iki farklı üretim yöntemiyle elde edilen liflerin katmanlı ve bimodal bir şekilde birleştirilerek oluşturulan nanolif matların filtreleme performansları değerlendirildi. Meltblown (MB) yöntemi ile üretilen lif tabakaları, benzer lif çaplarına sahip fakat farklı besleme hızlarıyla farklı kalınlıklara sahip olarak elde edildi. Çözelti üfleme (SB) yöntemi ile elde edilen 225 nanometre çapındaki ortalama lif eklenerek oluşturulan bimodal yapılar, 1, 5 ve 10 rpm vidalı dönme/besleme hızlarında elde edilen yaklaşık 800 nm çapındaki liflere göre daha yüksek filtreleme performansına sahipti. Ardından, 15 gsm ortalama taban ağırlığına sahip 4 örnek arasında; EB nanolif içermeyen sadece MB örnek; yalnızca EB nanolif içeren EB örneği; 4 gsm EB nanolif içeren (L) örnek ve 4 gsm EB nanolif içeren 4 katmanlı (4L) örnek karşılaştırıldı. 4L örneği, %96.01 filtreleme verimliliği ve 135 Pa basınç düşüşü ile en yüksek kalite faktörüne (0.0353) sahipti. Tüm örneklerde sonraki corona işlemiyle filtreleme verimliliği artmasına rağmen, en yüksek değer (%99.34) 4L örneğinden elde edildi.
References
- Kaur R, Pandey P (2021) Air Pollution, Climate Change, and Human Health in Indian Cities: A Brief Review. Front in Sustainable Cities 705131-3. https://doi.org/10.3389/frsc.2021.705131
- Khajavi R, Bahadoran MMS, Bahador A (2012) Removal of microbes and air pollutants passing through nonwoven polypropylene filters by activated carbon and nanosilver colloidal layers. J Ind Text 42:219-230. https://doi.org/10.1177/1528083711434653
- Schwartz J, Laden F, Zanobetti A (2002) The concentration-response relation between PM(2.5) and daily deaths. Environ Health Perspect 110:1025–1029. https://doi.org/10.1289/ehp.021101025
- Shoeib M, Harner T, Wilford BH, Jones KC, Zhu J (2005) Perfluorinated Sulfonamides in Indoor and Outdoor Air and Indoor Dust: Occurrence, Partitioning, and Human Exposure. Environ Sci Technol 39:6599–6606. https://doi.org/10.1021/es048340y
- Hyttinen M, Pasanen P, Kalliokoski P (2001) Adsorption and desorption of selected VOCs in dust collected on air filters. Atmos Environ 35:5709-5716. https://doi.org/10.1016/S1352-2310(01)00376-4
- Kilic A, Shim E, Pourdeyhimi B (2015) Electrostatic Capture Efficiency Enhancement of Polypropylene Electret Filters with Barium Titanate. Aerosol Sci Technol 49:666–673. https://doi.org/10.1080/02786826.2015.1061649
- Erben J, Jencova V, Chvojka J, Blazkova L, Strnadova K, Modrak M, et al. (2016). The combination of meltblown technology and electrospinning – The influence of the ratio of micro and nanofibers on cell viability. Mater Lett 173:153–157. https://doi.org/10.1016/j.matlet.2016.02.147
- Eticha A, Toptaş A, Akgül Y, Kılıç A (2023) Electrically assisted solution blow spinning of PVDF/TPU nanofibrous mats for air filtration applications. Turk J Chem 47:47–53. https://doi.org/10.55730/1300-0527.3515
- Wang X, Um IC, Fang D, Okamoto A, Hsiao BS, Chu B (2005) Formation of water-resistant hyaluronic acid nanofibers by blowing-assisted electro-spinning and non-toxic post treatments. Polym 46:4853-4867. https://doi.org/10.1016/j.polymer.2005.03.058
- Choi HJ, Kumita M, Hayashi S, Yuasa H, Kamiyama M, Seto T, et al. (2017) Filtration Properties of Nanofiber/Microfiber Mixed Filter and Prediction of its Performance. Aerosol Air Qual Res 17:1052–1062. doi: 10.4209/aaqr.2016.06.0256
- Kilic A, Russell S, Shim E, Pourdeyhimi B (2017) 4- The charging and stability of electret filters. in: P.J. Brown, C.L. Cox (Eds.), Fibrous Filter Media, Woodhead Publishing, pp. 95–121. https://doi.org/10.1016/B978-0-08-100573-6.00025-3
- Gungor M, Selcuk S, Toptas A, Kilic A (2022) Aerosol Filtration Performance of Solution Blown PA6 Webs with Bimodal Fiber Distribution. ACS Omega 7:46602–46612. https://doi.org/10.1021/acsomega.2c05449
- Toptas A, Calisir DM, Kilic A (2023) Production of Ultrafine PVDF Nanofiber-/Nanonet-Based Air Filters via the Electroblowing Technique by Employing PEG as a Pore-Forming Agent. ACS Omega 41:38557–38565. https://doi.org/10.1021/acsomega.3c05509
- Lin S, Fu X, Luo M, Zhong WH (2022) Tailoring bimodal protein fabrics for enhanced air filtration performance. Sep Purif Technol 290:120913. https://doi.org/10.1016/j.seppur.2022.120913
- Mei Y, Wang Z, Li X (2013) Improving filtration performance of electrospun nanofiber mats by a bimodal method. J Appl Polym Sci 128:1089–1094. https://doi.org/10.1002/app.38296
- Lin M, Shen J, Wang B, Chen Y, Zhang C, Qi H (2023) Preparation of fluffy bimodal conjugated electrospun poly(lactic acid) air filters with low pressure drop. RSC Adv 13:30680–30689. https://doi.org/10.1039/D3RA05969C
Enhancing filtration performance with layered and bimodal nanofiber structures
Year 2024,
Volume: 4 Issue: 1, 220 - 231, 31.01.2024
Ali Toptaş
,
Ali Kılıç
,
Ali Demir
Abstract
Particulate matter (PM) must be removed from the air because it is a serious threat to human health. Micro and/or nanoporous nonwoven fabrics are commonly used to filter these particles. In our study, the filtration performances of nanofibrous mats, which were obtained by combining fibers produced by two different production methods in a layered and bimodal manner, were evaluated. Fibrous layers produced by the meltblown (MB) method were obtained with similar fiber diameters and different thicknesses by different feeding speeds. Bimodal structures obtained by adding fibers with an average diameter of 225 nanometers produced by the solution blowing (SB) method into fibers with an average diameter of around 800 nm obtained at 1, 5 and 10 rpm screw rotating/feeding speeds had higher filtration performance than the samples without SB nanofibers. Then, among the 4 samples with an average basis weight of 15 gsm, the sample MB only without (electro-blown nanofiber); the EB sample contains only EB nanofibers; the sample (L) containing 4 gsm EB nanofibers and the 4-layer sample (4L) containing 4 gsm EB nanofibers (138 nm) were compared. The 4L sample had the highest quality factor (0.0353) with a filtration efficiency of %96.01 and a pressure drop of 135 Pa. Although the filtration efficiency increased in all samples with the subsequent corona treatment, the highest value (99.34%) was obtained from the 4L sample.
References
- Kaur R, Pandey P (2021) Air Pollution, Climate Change, and Human Health in Indian Cities: A Brief Review. Front in Sustainable Cities 705131-3. https://doi.org/10.3389/frsc.2021.705131
- Khajavi R, Bahadoran MMS, Bahador A (2012) Removal of microbes and air pollutants passing through nonwoven polypropylene filters by activated carbon and nanosilver colloidal layers. J Ind Text 42:219-230. https://doi.org/10.1177/1528083711434653
- Schwartz J, Laden F, Zanobetti A (2002) The concentration-response relation between PM(2.5) and daily deaths. Environ Health Perspect 110:1025–1029. https://doi.org/10.1289/ehp.021101025
- Shoeib M, Harner T, Wilford BH, Jones KC, Zhu J (2005) Perfluorinated Sulfonamides in Indoor and Outdoor Air and Indoor Dust: Occurrence, Partitioning, and Human Exposure. Environ Sci Technol 39:6599–6606. https://doi.org/10.1021/es048340y
- Hyttinen M, Pasanen P, Kalliokoski P (2001) Adsorption and desorption of selected VOCs in dust collected on air filters. Atmos Environ 35:5709-5716. https://doi.org/10.1016/S1352-2310(01)00376-4
- Kilic A, Shim E, Pourdeyhimi B (2015) Electrostatic Capture Efficiency Enhancement of Polypropylene Electret Filters with Barium Titanate. Aerosol Sci Technol 49:666–673. https://doi.org/10.1080/02786826.2015.1061649
- Erben J, Jencova V, Chvojka J, Blazkova L, Strnadova K, Modrak M, et al. (2016). The combination of meltblown technology and electrospinning – The influence of the ratio of micro and nanofibers on cell viability. Mater Lett 173:153–157. https://doi.org/10.1016/j.matlet.2016.02.147
- Eticha A, Toptaş A, Akgül Y, Kılıç A (2023) Electrically assisted solution blow spinning of PVDF/TPU nanofibrous mats for air filtration applications. Turk J Chem 47:47–53. https://doi.org/10.55730/1300-0527.3515
- Wang X, Um IC, Fang D, Okamoto A, Hsiao BS, Chu B (2005) Formation of water-resistant hyaluronic acid nanofibers by blowing-assisted electro-spinning and non-toxic post treatments. Polym 46:4853-4867. https://doi.org/10.1016/j.polymer.2005.03.058
- Choi HJ, Kumita M, Hayashi S, Yuasa H, Kamiyama M, Seto T, et al. (2017) Filtration Properties of Nanofiber/Microfiber Mixed Filter and Prediction of its Performance. Aerosol Air Qual Res 17:1052–1062. doi: 10.4209/aaqr.2016.06.0256
- Kilic A, Russell S, Shim E, Pourdeyhimi B (2017) 4- The charging and stability of electret filters. in: P.J. Brown, C.L. Cox (Eds.), Fibrous Filter Media, Woodhead Publishing, pp. 95–121. https://doi.org/10.1016/B978-0-08-100573-6.00025-3
- Gungor M, Selcuk S, Toptas A, Kilic A (2022) Aerosol Filtration Performance of Solution Blown PA6 Webs with Bimodal Fiber Distribution. ACS Omega 7:46602–46612. https://doi.org/10.1021/acsomega.2c05449
- Toptas A, Calisir DM, Kilic A (2023) Production of Ultrafine PVDF Nanofiber-/Nanonet-Based Air Filters via the Electroblowing Technique by Employing PEG as a Pore-Forming Agent. ACS Omega 41:38557–38565. https://doi.org/10.1021/acsomega.3c05509
- Lin S, Fu X, Luo M, Zhong WH (2022) Tailoring bimodal protein fabrics for enhanced air filtration performance. Sep Purif Technol 290:120913. https://doi.org/10.1016/j.seppur.2022.120913
- Mei Y, Wang Z, Li X (2013) Improving filtration performance of electrospun nanofiber mats by a bimodal method. J Appl Polym Sci 128:1089–1094. https://doi.org/10.1002/app.38296
- Lin M, Shen J, Wang B, Chen Y, Zhang C, Qi H (2023) Preparation of fluffy bimodal conjugated electrospun poly(lactic acid) air filters with low pressure drop. RSC Adv 13:30680–30689. https://doi.org/10.1039/D3RA05969C