Research Article
BibTex RIS Cite

The influence of filler wire on microstructure and mechanical properties is submerged arc welding of S355J2 structural steel

Year 2024, Volume: 4 Issue: 2, 426 - 438, 31.07.2024
https://doi.org/10.61112/jiens.1415708

Abstract

In this study, butt welding process was carried out on 20 mm thick S355J2 structural steel by submerged arc welding method using GeKa S1, S2Si and S3Mo filler wires produced according to EN ISO 14171-A standard. Welding processes were carried out using aluminate basic Eliflux BFPP (SAAB166ACH5) powder produced in accordance with EN ISO 147174 standard. Welded structures were characterized by performing non-destructive testing, macro and microstructural investigations, and microhardness, tensile test, bending test and Charpy impact test on the weld metal and the heat affected zone (HAZ) at -20 0C. By comparing the properties of welded structures obtained using different fillers, the microstructure - mechanical property relationship has been established for filler metal selection for the expected performance in the field of use. The results showed that the welds made using S1 filler metal fractured from the weld area, and the welds made using S2Si and S3Mo filler metal fractured from the base material. No obvious difference was observed in the yield and tensile strength and % elongation values in all three welds. However, due to the use of S3Mo, compared to S1, an increase of 15% and 166% in the impact toughness of the weld metal and in the HAZ, and a 37% and 8% increase in microhardness, respectively, was achieved. As a result, in welding applications of structural steels used in the marine industry, the use of S2Si and S3Mo filler metals is suitable in terms of microstructure and mechanical properties. However, when evaluated in terms of cost-effectiveness, the use of S2Si wire is more appropriate, while in critical applications where the requirement for high impact toughness increases at low temperatures, the use of S3Mo filler metal is more suitable.

References

  • Wang B, Hu SJ, Sun L, Freiheit T (2020) Intelligent welding system technologies: State-of-the-art review and perspectives. J Manuf Syst 56: 373-391. https://doi.org/10.1016/j.jmsy.2020.06.020
  • Meng X, Huang Y, Cao J, Shen J, dos Santos JF (2021) Recent progress on control strategies for inherent issues in friction stir welding. Prog Mater Sci 115: 100706. https://doi.org/10.1016/j.pmatsci.2020.100706
  • Bunaziv I, Dørum C, Nielsen SE, Suikkanen P, Ren X, Nyhus B, Ericsson M, Akselsen OM (2020) Laser-arc hybrid welding of 12- and 15-mm thick structural steel. Int J Adv Manuf Technol 107: 2649–2669. https://doi.org/10.1007/s00170-020-05192-2
  • Turichin G, Kuznetsov M, Pozdnyakov A, Gook S, Gumenyuk A, Rethmeier M (2018) Influence of heat input and preheating on the cooling rate, microstructure and mechanical properties at the hybrid laser-arc welding of API 5L X80 steel. Procedia CIRP, 74, 748–751. https://doi.org/10.1016/j.procir.2018.08.018
  • Çam G, Erim S, Yeni Ç, Koçak M (1999) Determination of mechanical and fracture properties of laser beam welded steel joints. Weld J 78(6): 193s-201s.
  • Özdemir O, Çam G, Çimenoğlu H, Koçak M (2012) Investigation into mechanical properties of high strength steel plates welded with low temperature transformation (LTT) electrodes. Int J Surf Sci Eng 6(1-2): 157-173. https://doi.org/10.1504/IJSURFSE.2012.046851.
  • Çam G, Koçak M, Dos Santos JF (1999) Developments in laser welding of metallic materials and characterization of the joints. Weld World 43(2): 13-26.
  • Riekehr S, Çam G, Dos Santos JF, Koçak M, Klein RM, Fischer R (1998) Investigation on Fracture Toughness of Laser Beam Welded Steels’, Proc. of 7th European Conference on Laser Treatment of Materials, ECLAT’98, September 21-23, 1998, Hannover, Germany, ed. B.L. Mordike, pub. Werkstoff-Informationsgeselschaft mbH, Frankfurt, pp. 405-411.
  • Koçak M, Çam G, Kim YJ, Dos Santos JF (1999) Mechanical and Fracture Properties of Laser Beam Welded Joints’, Proc. of the 5th Int. Conf. on Trends in Welding Research, June 1-5, 1998, Callaway Gardens Resort, Pine Mountain, Georgia, USA, ed: J.M. Vitek, S.A. David, J.A. Johnson, H.B. Smart, and T. DebRoy, ASM Int., Materials Park, OH, USA, pp. 805-815.
  • Gook S, Midik A, Biegler M, Gumenyuk A, Rethmeier M (2022) Joining 30 mm Thick Shipbuilding Steel Plates EH36 Using a Process Combination of Hybrid Laser Arc Welding and Submerged Arc Welding. J Manuf Mater Process, 6(4): 84. https://doi.org/10.3390/jmmp6040084
  • Wieczorska A, Domżalski R (2021) The Influence Of Submerged Arc Weldıng Condıtıons On The Propertıes Of S355jr Structural Steel Joınts, International Journal of Mechanical Engineering and Technology 12(12): 19-29. https://doi.org/10.17605/OSF.IO/E32PV
  • Zhou B, Pychynski T, Reischi M, Kharlamov E, Mikut R (2022) Machine learning with domain knowledge for predictive quality monitoring in resistance spot welding. J Intell Manuf Spec Equip 33(4): 1139-1163. https://doi.org/10.1007/s10845-021-01892-y
  • Koçak, M. (2010). Structural integrity of welded structures: Process - property – performance (3P) relationship. Paper presented at the 63rd Annual Assembly & International Conference of the International Institute of Welding, Istanbul, Turkey.
  • Svensson LE, and Gretoft B (1990) Microstructure and impact toughness of C-Mn weld metals. Weld Res Suppl 69(12): 454–461.
  • Jorge JC, Souza LF, Rebello JM (2001) The effect of chromium on the microstructure/toughness relationship of C–Mn weld metal deposits. Mater Charact 47: 195-205.
  • Evans GM, and Bailey N (1997) Metallurgy of Basic Weld Metal, Cambridge, Abington Publishing.
  • Wang HH, Tong Z, Evans GM (2018) Systematic role of Mn and Ti on microstructure and impact properties of reheated C-Mn weld metals, in Conference: Intermediate meeting of IIW Sub.Comm.2C, Doc.II-C-549-18, Genoa.
  • Abson DJ (2018) Acicular ferrite and bainite in C–Mn and low alloy steel arc weld metals, Sci Technol Weld Join 23(8): 635–648. https://doi.org/10.1080/13621718.2018.1461992.
  • Gürol U, Çoban O, Coşar İC, Koçak M (2022) Effect of the notch location on the Charpy-V toughness results for robotic flux-cored arc welded multipass joints. Mater Test 64(9): 1278-1289. https://doi.org/10.1515/mt-2022-0113
  • Dos Santos J, Cam G, Torster F, Insfran A, Riekehr S, Ventzke V, Kocak M (2000) Properties of power beam welded steels, Al- and Ti-alloys: Significance of strength mismatch. Weld World 44 (6): 42-64.
  • Cam G, Yeni C, Erim S, Ventzke V, Koçak M (1998) Investigation into properties of laser welded similar and dissimilar steel joints, Sci Technol Weld Join 3(4): 177-189.
  • Kucukomeroglu T, Aktarer SM, Ipekoglu G, Çam G (2019) Investigation of mechanical and microstructural properties of friction stir welded dual phase (DP) steel. IOP Conf. Series: Materials Science and Engineering, 629, 012010. https://doi.org/10.1088/1757-899X/629/1/012010
  • Kucukomeroglu T, Aktarer SM, Ipekoglu G, Çam G (2018) Mechanical properties of friction stir welded St 37 and St 44 steel joints. Materials Testing, 60(12), 1163-1170. https://doi.org/10.3139/120.111266
  • Kucukomeroglu T, Aktarer SM, Ipekoglu G, Cam G (2018) Microstructure and mechanical properties of friction stir welded St52 steel joints. International Journal of Minerals, Metallurgy and Materials, 25 (12): 1457-1464. https://doi.org/10.1007/s12613-018-1700-x
  • Serindag HT, and Cam G (2021) Microstructure and mechanical properties of gas metal arc welded AISI 430/AISI 304 dissimilar stainless steels butt joints. Journal of Physics: Conference Series, 1777, 012047. https://doi.org/10.1088/1742-6596/1777/1/012047
  • Senol M, and Cam G (2023) Investigation into microstructures and properties of AISI 430 ferritic steel butt joints fabricated by GMAW. Int J Press Vessels Pip 202: 104926. https://doi.org/10.1016/j.ijpvp.2023.104926
  • Sailender M, Suresh R, Reddy GC, Venkatesh S (2020) Prediction and comparison of the dilution and heat affected zone in submerged arc welding (SAW) of low carbon alloy steel joints. Measurement 150: 107084, ISSN 0263-2241, https://doi.org/10.1016/j.measurement.2019.107084
  • Ipekoğlu G., Cam G. (2019) Formation of weld defects in cold metal transfer arc welded 7075-T6 plates and its effect on joint performance. IOP Conf. Series: Materials Science and Engineering 629:012007. https://doi.org/10.1088/1757899X/629/1/012007
  • Cam G., Kocak M., Dobi D., Heikinheimo L., Siren M. (1997) Fracture behaviour of diffusion bonded bimaterial Ti-Al joints. Sci Technol Weld Join. 2 (3):95-101. https://doi.org/10.1179/stw.1997.2.3.95
  • Ólafsson ÓM, Jensen JJ, Berggreen C (2016) Experimental investigation of the thickness effect for large as-welded SAW S355 steel specimens. In U. Dam Nielsen, & J. Juncher Jensen (Eds.), Proceedings of the 13th International Symposium on Practical Design of Ships and Other Floating Structures (PRADS’2016) Technical University of Denmark.
  • Mcgrath JT, Chandel RS, Orr RF, Gianetto JA (1988) Microstructure/Mechanical Property Relationships in Thick-Section C-Mn Narrow-Groove Welds. Weld J 67: 196-201.
  • Miyamoto G, Karube Y, Furuhara T (2016) Formation of grain boundary ferrite in eutectoid and hypereutectoid pearlitic steels, Acta Mater 103: 370-381, ISSN 1359-6454. https://doi.org/10.1016/j.actamat.2015.10.032.
  • Song HY, Evans GM, Babu SS (2014) Effect of microstructural heterogeneities on scatter of toughness in multi-pass weld metal of C–Mn steels. Sci Technol Weld Join 19(5): 376–384. https://doi.org/10.1179/1362171814Y.0000000194

S355J2 yapı çeliklerinin toz altı ark kaynağında dolgu metalinin mikroyapı ve mekanik özelliklere etkisi

Year 2024, Volume: 4 Issue: 2, 426 - 438, 31.07.2024
https://doi.org/10.61112/jiens.1415708

Abstract

Bu çalışmada 20 mm kalınlığa sahip S355J2 yapı çeliğine EN ISO 14171-A standardına göre üretilmiş GeKa S1, S2Si ve S3Mo dolgu metalleri kullanılarak toz altı ark kaynağı yöntemi ile alın kaynağı prosesi gerçekleştirilmiştir. X kaynak ağzı geometrisi ve 600 kaynak ağzı açısı ile EN ISO 147174 standardına uygun olarak üretilmiş alüminat bazik Eliflux BFPP (SAAB66ACH5) tozu kullanılarak kaynak işlemleri uygulanmıştır. Kaynak prosesi sonrasında tahribatsız muayene, makro yapı incelemesi, mikroyapı incelemesi ile mikrosertlik, eğme, çekme ve -20 0C’de kaynak metali ve ısıdan etkilenmiş bölge (IEB)’den çentik darbe testleri gerçekleştirilerek kaynaklı yapılar karakterize edilmiştir. Farklı dolgu metalleri kullanılarak elde edilen kaynaklı yapıların özellikleri kıyaslanarak kullanım alanında beklenen performansa yönelik olarak dolgu metali seçimi için mikroyapı – mekanik özellik ilişkisi kurulmuştur. Elde edilen sonuçlar S1 dolgu metali ile yapılan kaynakların kaynak bölgesinden; S2Si ve S3Mo dolgu metalinde ana malzemeden koptuğunu göstermiştir. Her üç kaynakta da akma ve çekme dayanımı ve %uzama değerlerinde bariz bir farklılık gözlenmemiştir. Fakat S1’e kıyasla S3Mo kullanımı nedeniyle kaynak metali ve IEB’deki çentik darbe dayanımında sırasıyla %15 ve %166, mikrosertlikte %37 ve %8’lik artış sağlanmıştır. Sonuç olarak denizcilik endüstrisinde kullanılan yapı çeliklerinin kaynak uygulamalarında S2Si ve S3Mo dolgu metallerinin kullanımının mikroyapı ve mekanik özellikler açısından uygun olduğu fakat maliyet/performans açısından değerlendirildiğinde ise S2Si teli kullanımının, düşük sıcaklıklarda yüksek darbe dayanımı gereksiniminin arttığı kritik uygulamalarda ise S3Mo dolgu metali kullanımının daha uygun olacağı ortaya koyulmuştur.

References

  • Wang B, Hu SJ, Sun L, Freiheit T (2020) Intelligent welding system technologies: State-of-the-art review and perspectives. J Manuf Syst 56: 373-391. https://doi.org/10.1016/j.jmsy.2020.06.020
  • Meng X, Huang Y, Cao J, Shen J, dos Santos JF (2021) Recent progress on control strategies for inherent issues in friction stir welding. Prog Mater Sci 115: 100706. https://doi.org/10.1016/j.pmatsci.2020.100706
  • Bunaziv I, Dørum C, Nielsen SE, Suikkanen P, Ren X, Nyhus B, Ericsson M, Akselsen OM (2020) Laser-arc hybrid welding of 12- and 15-mm thick structural steel. Int J Adv Manuf Technol 107: 2649–2669. https://doi.org/10.1007/s00170-020-05192-2
  • Turichin G, Kuznetsov M, Pozdnyakov A, Gook S, Gumenyuk A, Rethmeier M (2018) Influence of heat input and preheating on the cooling rate, microstructure and mechanical properties at the hybrid laser-arc welding of API 5L X80 steel. Procedia CIRP, 74, 748–751. https://doi.org/10.1016/j.procir.2018.08.018
  • Çam G, Erim S, Yeni Ç, Koçak M (1999) Determination of mechanical and fracture properties of laser beam welded steel joints. Weld J 78(6): 193s-201s.
  • Özdemir O, Çam G, Çimenoğlu H, Koçak M (2012) Investigation into mechanical properties of high strength steel plates welded with low temperature transformation (LTT) electrodes. Int J Surf Sci Eng 6(1-2): 157-173. https://doi.org/10.1504/IJSURFSE.2012.046851.
  • Çam G, Koçak M, Dos Santos JF (1999) Developments in laser welding of metallic materials and characterization of the joints. Weld World 43(2): 13-26.
  • Riekehr S, Çam G, Dos Santos JF, Koçak M, Klein RM, Fischer R (1998) Investigation on Fracture Toughness of Laser Beam Welded Steels’, Proc. of 7th European Conference on Laser Treatment of Materials, ECLAT’98, September 21-23, 1998, Hannover, Germany, ed. B.L. Mordike, pub. Werkstoff-Informationsgeselschaft mbH, Frankfurt, pp. 405-411.
  • Koçak M, Çam G, Kim YJ, Dos Santos JF (1999) Mechanical and Fracture Properties of Laser Beam Welded Joints’, Proc. of the 5th Int. Conf. on Trends in Welding Research, June 1-5, 1998, Callaway Gardens Resort, Pine Mountain, Georgia, USA, ed: J.M. Vitek, S.A. David, J.A. Johnson, H.B. Smart, and T. DebRoy, ASM Int., Materials Park, OH, USA, pp. 805-815.
  • Gook S, Midik A, Biegler M, Gumenyuk A, Rethmeier M (2022) Joining 30 mm Thick Shipbuilding Steel Plates EH36 Using a Process Combination of Hybrid Laser Arc Welding and Submerged Arc Welding. J Manuf Mater Process, 6(4): 84. https://doi.org/10.3390/jmmp6040084
  • Wieczorska A, Domżalski R (2021) The Influence Of Submerged Arc Weldıng Condıtıons On The Propertıes Of S355jr Structural Steel Joınts, International Journal of Mechanical Engineering and Technology 12(12): 19-29. https://doi.org/10.17605/OSF.IO/E32PV
  • Zhou B, Pychynski T, Reischi M, Kharlamov E, Mikut R (2022) Machine learning with domain knowledge for predictive quality monitoring in resistance spot welding. J Intell Manuf Spec Equip 33(4): 1139-1163. https://doi.org/10.1007/s10845-021-01892-y
  • Koçak, M. (2010). Structural integrity of welded structures: Process - property – performance (3P) relationship. Paper presented at the 63rd Annual Assembly & International Conference of the International Institute of Welding, Istanbul, Turkey.
  • Svensson LE, and Gretoft B (1990) Microstructure and impact toughness of C-Mn weld metals. Weld Res Suppl 69(12): 454–461.
  • Jorge JC, Souza LF, Rebello JM (2001) The effect of chromium on the microstructure/toughness relationship of C–Mn weld metal deposits. Mater Charact 47: 195-205.
  • Evans GM, and Bailey N (1997) Metallurgy of Basic Weld Metal, Cambridge, Abington Publishing.
  • Wang HH, Tong Z, Evans GM (2018) Systematic role of Mn and Ti on microstructure and impact properties of reheated C-Mn weld metals, in Conference: Intermediate meeting of IIW Sub.Comm.2C, Doc.II-C-549-18, Genoa.
  • Abson DJ (2018) Acicular ferrite and bainite in C–Mn and low alloy steel arc weld metals, Sci Technol Weld Join 23(8): 635–648. https://doi.org/10.1080/13621718.2018.1461992.
  • Gürol U, Çoban O, Coşar İC, Koçak M (2022) Effect of the notch location on the Charpy-V toughness results for robotic flux-cored arc welded multipass joints. Mater Test 64(9): 1278-1289. https://doi.org/10.1515/mt-2022-0113
  • Dos Santos J, Cam G, Torster F, Insfran A, Riekehr S, Ventzke V, Kocak M (2000) Properties of power beam welded steels, Al- and Ti-alloys: Significance of strength mismatch. Weld World 44 (6): 42-64.
  • Cam G, Yeni C, Erim S, Ventzke V, Koçak M (1998) Investigation into properties of laser welded similar and dissimilar steel joints, Sci Technol Weld Join 3(4): 177-189.
  • Kucukomeroglu T, Aktarer SM, Ipekoglu G, Çam G (2019) Investigation of mechanical and microstructural properties of friction stir welded dual phase (DP) steel. IOP Conf. Series: Materials Science and Engineering, 629, 012010. https://doi.org/10.1088/1757-899X/629/1/012010
  • Kucukomeroglu T, Aktarer SM, Ipekoglu G, Çam G (2018) Mechanical properties of friction stir welded St 37 and St 44 steel joints. Materials Testing, 60(12), 1163-1170. https://doi.org/10.3139/120.111266
  • Kucukomeroglu T, Aktarer SM, Ipekoglu G, Cam G (2018) Microstructure and mechanical properties of friction stir welded St52 steel joints. International Journal of Minerals, Metallurgy and Materials, 25 (12): 1457-1464. https://doi.org/10.1007/s12613-018-1700-x
  • Serindag HT, and Cam G (2021) Microstructure and mechanical properties of gas metal arc welded AISI 430/AISI 304 dissimilar stainless steels butt joints. Journal of Physics: Conference Series, 1777, 012047. https://doi.org/10.1088/1742-6596/1777/1/012047
  • Senol M, and Cam G (2023) Investigation into microstructures and properties of AISI 430 ferritic steel butt joints fabricated by GMAW. Int J Press Vessels Pip 202: 104926. https://doi.org/10.1016/j.ijpvp.2023.104926
  • Sailender M, Suresh R, Reddy GC, Venkatesh S (2020) Prediction and comparison of the dilution and heat affected zone in submerged arc welding (SAW) of low carbon alloy steel joints. Measurement 150: 107084, ISSN 0263-2241, https://doi.org/10.1016/j.measurement.2019.107084
  • Ipekoğlu G., Cam G. (2019) Formation of weld defects in cold metal transfer arc welded 7075-T6 plates and its effect on joint performance. IOP Conf. Series: Materials Science and Engineering 629:012007. https://doi.org/10.1088/1757899X/629/1/012007
  • Cam G., Kocak M., Dobi D., Heikinheimo L., Siren M. (1997) Fracture behaviour of diffusion bonded bimaterial Ti-Al joints. Sci Technol Weld Join. 2 (3):95-101. https://doi.org/10.1179/stw.1997.2.3.95
  • Ólafsson ÓM, Jensen JJ, Berggreen C (2016) Experimental investigation of the thickness effect for large as-welded SAW S355 steel specimens. In U. Dam Nielsen, & J. Juncher Jensen (Eds.), Proceedings of the 13th International Symposium on Practical Design of Ships and Other Floating Structures (PRADS’2016) Technical University of Denmark.
  • Mcgrath JT, Chandel RS, Orr RF, Gianetto JA (1988) Microstructure/Mechanical Property Relationships in Thick-Section C-Mn Narrow-Groove Welds. Weld J 67: 196-201.
  • Miyamoto G, Karube Y, Furuhara T (2016) Formation of grain boundary ferrite in eutectoid and hypereutectoid pearlitic steels, Acta Mater 103: 370-381, ISSN 1359-6454. https://doi.org/10.1016/j.actamat.2015.10.032.
  • Song HY, Evans GM, Babu SS (2014) Effect of microstructural heterogeneities on scatter of toughness in multi-pass weld metal of C–Mn steels. Sci Technol Weld Join 19(5): 376–384. https://doi.org/10.1179/1362171814Y.0000000194
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Materials Science and Technologies, Resource Technologies, Physical Metallurgy, Material Characterization
Journal Section Research Articles
Authors

Abdullah Varol 0009-0007-5007-5093

Mehmet Safa Bozan 0009-0007-9176-1540

Ozan Çoban 0000-0002-1506-4619

Uğur Gürol 0000-0002-3205-7226

Publication Date July 31, 2024
Submission Date January 6, 2024
Acceptance Date May 22, 2024
Published in Issue Year 2024 Volume: 4 Issue: 2

Cite

APA Varol, A., Bozan, M. S., Çoban, O., Gürol, U. (2024). S355J2 yapı çeliklerinin toz altı ark kaynağında dolgu metalinin mikroyapı ve mekanik özelliklere etkisi. Journal of Innovative Engineering and Natural Science, 4(2), 426-438. https://doi.org/10.61112/jiens.1415708


by.png
Journal of Innovative Engineering and Natural Science by İdris Karagöz is licensed under CC BY 4.0