Research Article
BibTex RIS Cite

Keten tohumu yağından üretilen metil ve etil esterlerin harmanlanması ile edilen karışım biyodizellerin yoğunluk, kinematik viskozite ve ısıl değerlerinin karşılaştırılması

Year 2024, Volume: 4 Issue: 2, 541 - 560, 31.07.2024
https://doi.org/10.61112/jiens.1470119

Abstract

Bu çalışmada, keten tohumu yağından NaOH’un katalizör olarak kullanıldığı transesterifikasyon prosesi ile metil ester ve etil ester üretimi ve çalışma parametreleri klasik yöntem yardımıyla optimize edilmiştir. Katalizör kütlesi (%0,4-1,0 wt. NaOH), alkol:yağ molar oranı (3:1–9:1), reaksiyon sıcaklığı (30–60°C) ve reaksiyon süresi (30–75 dakika) gibi biyodizel verimi üzerindeki değişkenlerin etkilerini belirlemek için toplam 26 deney tasarlanmıştır. Metil esterin üretimi için optimum koşullar %0,60 NaOH wt., 6:1 metanol/yağ molar oranı, 60 °C reaksiyon sıcaklığı ve 60 dakika reaksiyon sıcaklığında %92,16 biyodizel verimi elde edilirken, etil ester üretiminde ise en yüksek verim %0,60 NaOH wt., 8:1 etanol/yağ molar oranı, 30 °C reaksiyon sıcaklığı ve 60 dakika reaksiyon sıcaklığında %89.83 biyodizel verimi ile sağlanmıştır. Optimal koşullarda üretilen metil ester ve etil ester hacim bazında kendi aralarında harmanlanmıştır. Saf biyodizeller, karışım biyodizeller ve saf dizel yakıtın yoğunluk, kinematik viskozite ve ısıl değer gibi temel yakıt özellikleri ölçülmüştür. Karışımların yoğunluk, viskozite ve ısıl değerlerini tahmin etmek için genelleştirilmiş denklemler verilmiştir. Tüm karışımlar için yoğunluk, viskozite ve ısıl değerlerin ölçülen ve tahmin edilen değerleri arasında kayda değer bir uyum olduğu bulunmuştur. Sonuçlara göre, yakıt karışımındaki metil ester konsantrasyonunun artmasıyla karışımların yoğunluğu ve viskoziteleri artmış, etil ester konsantrasyonunun artmasıyla ise karışımların ısıl değerinin artış gösterdiği tespit edilmiştir. Keten tohumu yağından optimize edilen saf biyodizeller ve biyodizel karışımların bu özellikleri ASTM D6571 ve EN 14214 biyodizel standartlarını karşılamaktadır. Bu yakıtların dizel motorlar için nitelikli bir yakıt olarak kullanılabileceği ifade edilebilir.

Supporting Institution

TÜBİTAK

Project Number

1919B012212243

Thanks

TÜBİTAK 2209-A Üniversite Öğrencileri Araştırma Projeleri Destekleme Programı kapsamında verilen proje desteğine teşekkür ederiz.

References

  • Sodhi AK, Tripathi S, Kundu K (2017) Biodiesel production using waste cooking oil: a waste to energy conversion strategy. Clean Technol Environ Policy 19:1799-1807. https://doi.org/10.1007/s10098-017-1357-6
  • Budhraja N, Pal A, Mishra RS (2022) Parameter optimization for enhanced biodiesel yield from Linum usitatissimum oil through solar energy assistance. Biomass Convers Biorefin 1-16. https://doi.org/10.1007/ s13399-022-03649-w
  • Ennetta R, Soyhan HS, Koyunoğlu C, Demir VG (2022) Current technologies and future trends for biodiesel production: a review. Arab J Sci Eng 47(12):15133-15151. https://doi.org/10.1007/s13369-022-07121-9
  • Zafar MW, Shahbaz M, Hou F, Sinha A (2019) From nonrenewable to renewable energy and its impact on economic growth: the role of research & development expenditures in Asia-Pacific Economic Cooperation countries. J Clean Prod 212:1166-1178. https://doi.org/10.1016/j.jclepro.2018.12.081
  • Osman AI, Chen L, Yang M, Msigwa G, Farghali M, Fawzy S, Rooney DW, Yap PS (2023) Cost, environmental impact, and resilience of renewable energy under a changing climate: a review. Environmental Chemistry Letters 21(2):741-764. https://doi.org/10.1007/s10311-022-01532-8
  • Manimegalai V, Rukkumani V, Gayathri A, Pandiyan P, Mohanapriya V (2023) An Overview of Global Renewable Energy Resources, 2(2.4). In: Sailesh I, Anand N, Mohd N, Fadi A (eds) Renewable Energy and AI for Sustainable Development, CRC Press, Boca Raton, ss 2-5.
  • Islam A, Malek A, Teo SH, Marwani HM, Rahman MM, Asiri AM, Aziziur M, Khan R, Taufiq-Yap YH, Awual MR (2023) Smart materials for CO2 conversion into renewable fuels and emission reduction. Sustain Mater Techno e00636. https://doi.org/10.1016/j.susmat.2023.e00636
  • Puchakayala HC, Viswanathan A, Abrar I, Rajamohan N (2023) Maximizing the potential of biodiesel through nanoparticle assistance: A review of key factors affecting performance and emissions. Sustain Energy Technol Assessments 60, 103539. https://doi.org/10.1016/j.seta.2023.103539
  • Guo M, Jiang W, Ding J, Lu J (2022) Highly active and recyclable CuO/ZnO as photocatalyst for transesterification of waste cooking oil to biodiesel and the kinetics. Fuel 315, 123254. https://doi.org/10.1016/ j.fuel.2022.123254
  • Silva Jr JL, Celestino MS, Taranto OP, Santana HS (2024) Smart scale-up of micromixers for efficient continuous biodiesel synthesis: A numerical study for process intensification. Chem Eng Process: Process Intensif 196, 109664. https://doi.org/10.1016/j.cep.2024.109664
  • Arora R, Nigha KS, Verma P, Wanchoo RK, Toor AP (2024) Microalgal synthesis of the biodiesel employing simultaneous extraction and esterification via heterogeneous catalyst. J Indian Chem Soc 101(2), 101123. https://doi.org/10.1016/j.jics.2024.101123
  • Brahma S, Nath B, Basumatary B, Das B, Saikia P, Patir K, Basumatary S (2022) Biodiesel production from mixed oils: A sustainable approach towards industrial biofuel production. Chem Eng J Adv 10, 100284. https://doi.org/10.1016/j.ceja.2022.100284
  • Basumatary SF, Patir K, Das B, Saikia P, Brahma S, Basumatary B, Basumatary S (2022) Production of renewable biodiesel using metal organic frameworks based materials as efficient heterogeneous catalysts. J Clean Prod 358, 131955. https://doi.org/10.1016/j.jclepro.2022.131955
  • Qamar OA, Jamil F, Hussain M, Bae S, Inayat A, Shah NS, Waris A, Akhter P, Kwon EE, Park YK (2023) Advances in synthesis of TiO2 nanoparticles and their application to biodiesel production: A review. Chem Eng J 460, 141734. https://doi.org/10.1016/j.cej.2023.141734
  • Dwivedi G, Jain S, Shukla AK, Verma P, Verma TN, Saini G (2022) Impact analysis of biodiesel production parameters for different catalyst. Environ Develop Sustain 1-21. https://doi.org/10.1007/s10668-021-02073-w
  • Lam MK, Lee KT (2011) Mixed methanol–ethanol technology to produce greener biodiesel from waste cooking oil: A breakthrough for SO₄²⁻/SnO₂–SiO₂ catalyst. Fuel Process Technol 92(8). https://doi.org/10.1016/ j.fuproc.2011.04.012
  • Arzamendi G, Campo I, Arguinarena E, Sánchez M, Montes M, Gandía LM (2007) Synthesis of biodiesel with heterogeneous NaOH/alumina catalysts: comparison with homogeneous NaOH. Chem Eng J 134(1-3): 123-130. https://doi.org/10.1016/j.cej.2007.03.049
  • Musa IA (2016) The effects of alcohol to oil molar ratios and the type of alcohol on biodiesel production using transesterification process. Egypt J Pet 25(1):21-31. http://dx.doi.org/10.1016/j.ejpe.2015.06.007
  • Sanli H, Alptekin E, Canakci M (2019) Production of fuel quality ethyl ester biodiesel: 1. Laboratory-scale optimization of waste frying oil ethanolysis, 2. Pilot-scale production with the optimal reaction conditions. Waste Biomass Valori 10:1889-1898. https://doi.org/10.1007/s12649-018-0195-z
  • Aslan V, Eryilmaz T (2020) Polynomial regression method for optimization of biodiesel production from black mustard (Brassica nigra L.) seed oil using methanol, ethanol, NaOH, and KOH. Energy 209, 118386. https://doi.org/10.1016/j.energy.2020.118386
  • Ramírez-Verduzco LF, Hernández-Sánchez MJ (2024) Group contribution method for predicting viscosity of alkyl esters and biodiesel. Fuel 357, 129666. https://doi.org/10.1016/j.fuel.2023.129666
  • Corach J, Colman M, Sorichetti PA, Romano SD (2017) Kinematic viscosity of soybean biodiesel and diesel fossil fuel blends: Estimation from permittivity and temperature. Fuel 207:488-492. http://dx.doi.org/10.1016/j.fuel.2017.06.102
  • Sarin A, Sharma N, Devgan K, Singh M (2021) Study of kinematic viscosity and density of biodiesels exposed to radiations. Mater Today Proc, 46:5516-5522. https://doi.org/10.1016/j.matpr.2020.09.257
  • Ferreira AG, Talvera-Prieto NMC, Portugal AA, Moreira RJ (2021) Models for predicting viscosities of biodiesel fuels over extended ranges of temperature and pressure. Fuel 287, 119544. https://doi.org/10.1016/ j.fuel.2020.119544
  • Gülüm M, Bilgin A (2017) Measurements and empirical correlations in predicting biodiesel-diesel blends’ viscosity and density. Fuel 199:567-577. http://dx.doi.org/10.1016/j.fuel.2017.03.001
  • Bhuiya MMK, Rasul MG, Khan MMK, Ashwath N, Azad AK, Hazrat MA (2016) Prospects of 2nd generation biodiesel as a sustainable fuel–Part 2: Properties, performance and emission characteristics. Renew Sustain Energy Rev 55:1129-1146. http://dx.doi.org/10.1016/j.rser.2015.09.086
  • Ramírez-Verduzco LF, Rodríguez-Rodríguez JE, del Rayo Jaramillo-Jacob A (2012) Predicting cetane number, kinematic viscosity, density and higher heating value of biodiesel from its fatty acid methyl ester composition. Fuel 91(1):102-111. http://dx.doi.org/10.1016/j.fuel.2011.06.070
  • Sajjadi B, Raman AAA, Arandiyan H (2016) A comprehensive review on properties of edible and non-edible vegetable oil-based biodiesel: Composition, specifications and prediction models. Renew Sustain Energy Rev 63:62-92. http://dx.doi.org/10.1016/j.rser.2016.05.035
  • Bukkarapu KR, Krishnasamy A (2022) Predicting engine fuel properties of biodiesel and biodiesel-diesel blends using spectroscopy based approach. Fuel Process Technol 230, 107227. https://doi.org/10.1016/j.fuproc. 2022.107227
  • Mujtaba MA, Kalam MA, Masjuki HH, Razzaq L, Khan HM, Soudagar MEM, Gul M, Ahmed W, Raju VD, Kumar R, Ong HC (2021) Development of empirical correlations for density and viscosity estimation of ternary biodiesel blends. Renew Energy 179:1447-1457. https://doi.org/10.1016/j.renene.2021.07.121
  • Pham, MT, Hoang AT, Le AT, Al-Tawaha ARMS, Dong VH, Le VV (2018) Measurement and prediction of the density and viscosity of biodiesel blends. Int J Technol 9(5):1015-1026
  • Wang L, Wang H, Fan J, Han Z (2023) Synthesis, catalysts and enhancement technologies of biodiesel from oil feedstock–A review. Sci Total Environ, 903, 166982. https://doi.org/10.1016/j.scitotenv.2023.166982
  • Şahin S, Öğüt H (2018) Investigation of the effects of linseed oil biodiesel and diesel fuel blends on engine performance and exhaust emissions. Int J Automot Eng Technol 7(4):149-157
  • Danish M, Ahmad T, Ayoub M, Geremew B, Adeloju S (2020) Conversion of flaxseed oil into biodiesel using KOH catalyst: Optimization and characterization dataset. Data Brief 29, 105225. https://doi.org/10.1016/ j.renene.2019.03.036
  • Etim AO, Musonge P, Eloka-Eboka AC (2022) Process optimization of bio-alkaline catalysed transesterification of flax seed oil methyl ester. Sci Afr 16, e01275. https://doi.org/10.1016/j.sciaf.2022.e01275
  • Sanli H, Alptekin E, Canakci M (2019) Production of fuel quality ethyl ester biodiesel: 1. Laboratory-scale optimization of waste frying oil ethanolysis, 2. Pilot-scale production with the optimal reaction conditions. Waste Biomass Valori 10:1889-1898. https://doi.org/10.1007/s12649-018-0195-z
  • Farokhnia, A., Jokar, S. M., Parvasi, P., & Kim, A. S. (2022). A novel design for biodiesel production from methanol+ mutton bone fat mixture. Biotechnol Biofuels Bioprod 15(1), 130. https://doi.org/10.1186/s13068-022-02229-4
  • Sebayang AH, Ideris F, Silitonga AS, Shamsuddin AH, Zamri MFMA, Pulungan MA, Siahaan S, Alfansury, M, Kusumo F, Milano J (2023) Optimization of ultrasound-assisted oil extraction from Carica candamarcensis; A potential Oleaginous tropical seed oil for biodiesel production. Renew Energy, 211: 434-444. https://doi.org/ 10.1016/j.renene.2023.04.099
  • Sun X, Opulencia MJC, Alexandrovich TP, Khan A, Algarni M, Abdelrahman A (2022). Modeling and optimization of vegetable oil biodiesel production with heterogeneous nano catalytic process: Multi-layer perceptron, decision regression tree, and K-Nearest Neighbor methods. Environmental Technology & Innovation 27, 102794
  • Noipin K, Kumar S (2015) Optimization of ethyl ester production assisted by ultrasonic irradiation. Ultrason Sonochem 22:548-558. http://dx.doi.org/10.1016/j.ultsonch.2014.07.019
  • Alptekin E, Canakci M (2008) Determination of the density and the viscosities of biodiesel–diesel fuel blends. Renew Energy 33(12):2623-2630. https://doi.org/10.1016/j.renene.2008.02.020
  • Krishnamurthy KN, Sridhara SN, Kumar CA (2018) Synthesis and optimization of Hydnocarpus wightiana and dairy waste scum as feed stock for biodiesel production by using response surface methodology. Energy 153:1073-1086. https://doi.org/10.1016/j.energy.2018.04.068
  • Aslan V (2023) Fuel characterization, engine performance characteristics and emissions analysis of different mustard seed biodiesel: An overview. J Biotec 370:12-30. https://doi.org/10.1016/j.jbiotec.2023.05.006
  • Reyero I, Arzamendi G, Zabala S, Gandía LM (2015) Kinetics of the NaOH-catalyzed transesterification of sunflower oil with ethanol to produce biodiesel. Fuel Process Technol 129:147-155. http://dx.doi.org/10.1016/ j.fuproc.2014.09.008
  • Eze VC, Harvey AP, Phan AN (2015) Determination of the kinetics of biodiesel saponification in alcoholic hydroxide solutions. Fuel 140:724-730. http://dx.doi.org/10.1016/j.fuel.2014.10.001
  • Sultana S, Khalid A, Ahmad M, Zuhairi AA, Teong LK, Zafar M, Hassan FU (2014) The production, optimization, and characterization of biodiesel from a novel source: Sinapis alba L. Int J Green Energy 11(3):280-291. https://doi.org/10.1080/15435075.2013.772520
  • Muthukumaran C, Praniesh R, Navamani P, Swathi R, Sharmila G, Kumar NM (2017) Process optimization and kinetic modeling of biodiesel production using non-edible Madhuca indica oil. Fuel 195:217-225. http://dx.doi.org/10.1016/j.fuel.2017.01.060
  • Valle PW, Rezende TF, Souza RA, Fortes IC, Pasa VM (2009) Combination of fractional factorial and Doehlert experimental designs in biodiesel production: Ethanolysis of Raphanus sativus L. var. oleiferus stokes oil catalyzed by sodium ethoxide. Energy and Fuels 23(10):5219-5227. https://doi.org/10.1021/ef900468p
  • Silitonga AS, Masjuki HH, Ong HC, Yusaf T, Kusumo F, Mahlia TMI (2016) Synthesis and optimization of Hevea brasiliensis and Ricinus communis as feedstock for biodiesel production: A comparative study. Ind Crops Prod 85:274-286. http://dx.doi.org/10.1016/j.indcrop.2016.03.017.
  • Nain P, Jaiswal SK, Prakash NT, Prakash R, Gupta SK (2020) Influence of acyl acceptor blends on the ester yield and fuel properties of biodiesel generated by whole-cell catalysis of cottonseed oil. Fuel 259, 116258. https://doi.org/10.1016/j.fuel.2019.116258
  • Folayan AJ, Anawe PAL, Aladejare AE, Ayeni AO (2019) Experimental investigation of the effect of fatty acids configuration, chain length, branching and degree of unsaturation on biodiesel fuel properties obtained from lauric oils, high-oleic and high-linoleic vegetable oil biomass. Energy Rep 5:793-806. https://doi.org/10.1016/ j.egyr.2019.06.013
  • Ghazali WNMW, Mamat R, Masjuki HH, Najafi G (2015) Effects of biodiesel from different feedstocks on engine performance and emissions: A review. Renew Sustain Energy Rev 51:585-602. http://dx.doi.org/10.1016/ j.rser.2015.06.031
  • Hoekman SK, Broch A, Robbins C, Ceniceros E, Natarajan M (2012) Review of biodiesel composition, properties, and specifications. Renew Sustain Energy Rev 16(1):143-169. http://dx.doi.org/10.1016/ j.rser.2011.07.143
  • Llamas A, Al-Lal AM, García-Martínez MJ, Ortega MF, Llamas JF, Lapuerta M, Canoira L (2017) Polycyclic Aromatic Hydrocarbons (PAHs) produced in the combustion of fatty acid alkyl esters from different feedstocks: Quantification, statistical analysis and mechanisms of formation. Sci Total Environ 586:446-456. http://dx.doi.org/10.1016/j.scitotenv.2017.01.180.

Comparison of density, kinematic viscosity, and heating values of blended biodiesels produced by blending methyl and ethyl esters produced from flaxseed oil

Year 2024, Volume: 4 Issue: 2, 541 - 560, 31.07.2024
https://doi.org/10.61112/jiens.1470119

Abstract

In this study, methyl ester and ethyl ester production from flaxseed oil through the transesterification process using NaOH as a catalyst and its operating parameters were optimized with the help of the classical method. A total of 26 experiments were designed to determine the effects of variables on biodiesel yield, such as catalyst weight (0.4–1.0 wt. NaOH), alcohol:oil molar ratio (3:1–9:1), reaction temperature (30–60°C) and reaction time (30–75 min). The optimum conditions for producing methyl ester were KOH of 0.4 wt%, 6:1 methanol/oil molar ratio, 60 °C reaction temperature, and 92.16% biodiesel yield obtained at 60 min reaction temperature. In ethyl ester production, the highest yield was achieved with 0.60% NaOH wt., 8:1 ethanol/oil molar ratio, 30 °C reaction temperature, and 89.83% biodiesel yield at 60 minutes reaction temperature. Methyl ester and ethyl ester produced under optimal conditions were blended among themselves on a volume basis. Basic fuel properties of pure biodiesels, blended biodiesels and pure diesel fuel, such as density, kinematic viscosity and heating value, were measured. Generalized equations are given to predict the density, viscosity and heating values of mixtures. It was found that there was a remarkable agreement between the measured and predicted values of density, viscosity and calorific values for all mixtures. According to the results, it was determined that the density and viscosity of the mixtures increased as the methyl ester concentration in the fuel mixture increased, and the calorific value of the mixtures increased as the ethyl ester concentration increased. These properties of pure biodiesels and biodiesel blends optimized from flaxseed oil meet ASTM D6571 and EN 14214 biodiesel standards. It can be stated that these fuels can be used as a qualified fuel for diesel engines.

Project Number

1919B012212243

References

  • Sodhi AK, Tripathi S, Kundu K (2017) Biodiesel production using waste cooking oil: a waste to energy conversion strategy. Clean Technol Environ Policy 19:1799-1807. https://doi.org/10.1007/s10098-017-1357-6
  • Budhraja N, Pal A, Mishra RS (2022) Parameter optimization for enhanced biodiesel yield from Linum usitatissimum oil through solar energy assistance. Biomass Convers Biorefin 1-16. https://doi.org/10.1007/ s13399-022-03649-w
  • Ennetta R, Soyhan HS, Koyunoğlu C, Demir VG (2022) Current technologies and future trends for biodiesel production: a review. Arab J Sci Eng 47(12):15133-15151. https://doi.org/10.1007/s13369-022-07121-9
  • Zafar MW, Shahbaz M, Hou F, Sinha A (2019) From nonrenewable to renewable energy and its impact on economic growth: the role of research & development expenditures in Asia-Pacific Economic Cooperation countries. J Clean Prod 212:1166-1178. https://doi.org/10.1016/j.jclepro.2018.12.081
  • Osman AI, Chen L, Yang M, Msigwa G, Farghali M, Fawzy S, Rooney DW, Yap PS (2023) Cost, environmental impact, and resilience of renewable energy under a changing climate: a review. Environmental Chemistry Letters 21(2):741-764. https://doi.org/10.1007/s10311-022-01532-8
  • Manimegalai V, Rukkumani V, Gayathri A, Pandiyan P, Mohanapriya V (2023) An Overview of Global Renewable Energy Resources, 2(2.4). In: Sailesh I, Anand N, Mohd N, Fadi A (eds) Renewable Energy and AI for Sustainable Development, CRC Press, Boca Raton, ss 2-5.
  • Islam A, Malek A, Teo SH, Marwani HM, Rahman MM, Asiri AM, Aziziur M, Khan R, Taufiq-Yap YH, Awual MR (2023) Smart materials for CO2 conversion into renewable fuels and emission reduction. Sustain Mater Techno e00636. https://doi.org/10.1016/j.susmat.2023.e00636
  • Puchakayala HC, Viswanathan A, Abrar I, Rajamohan N (2023) Maximizing the potential of biodiesel through nanoparticle assistance: A review of key factors affecting performance and emissions. Sustain Energy Technol Assessments 60, 103539. https://doi.org/10.1016/j.seta.2023.103539
  • Guo M, Jiang W, Ding J, Lu J (2022) Highly active and recyclable CuO/ZnO as photocatalyst for transesterification of waste cooking oil to biodiesel and the kinetics. Fuel 315, 123254. https://doi.org/10.1016/ j.fuel.2022.123254
  • Silva Jr JL, Celestino MS, Taranto OP, Santana HS (2024) Smart scale-up of micromixers for efficient continuous biodiesel synthesis: A numerical study for process intensification. Chem Eng Process: Process Intensif 196, 109664. https://doi.org/10.1016/j.cep.2024.109664
  • Arora R, Nigha KS, Verma P, Wanchoo RK, Toor AP (2024) Microalgal synthesis of the biodiesel employing simultaneous extraction and esterification via heterogeneous catalyst. J Indian Chem Soc 101(2), 101123. https://doi.org/10.1016/j.jics.2024.101123
  • Brahma S, Nath B, Basumatary B, Das B, Saikia P, Patir K, Basumatary S (2022) Biodiesel production from mixed oils: A sustainable approach towards industrial biofuel production. Chem Eng J Adv 10, 100284. https://doi.org/10.1016/j.ceja.2022.100284
  • Basumatary SF, Patir K, Das B, Saikia P, Brahma S, Basumatary B, Basumatary S (2022) Production of renewable biodiesel using metal organic frameworks based materials as efficient heterogeneous catalysts. J Clean Prod 358, 131955. https://doi.org/10.1016/j.jclepro.2022.131955
  • Qamar OA, Jamil F, Hussain M, Bae S, Inayat A, Shah NS, Waris A, Akhter P, Kwon EE, Park YK (2023) Advances in synthesis of TiO2 nanoparticles and their application to biodiesel production: A review. Chem Eng J 460, 141734. https://doi.org/10.1016/j.cej.2023.141734
  • Dwivedi G, Jain S, Shukla AK, Verma P, Verma TN, Saini G (2022) Impact analysis of biodiesel production parameters for different catalyst. Environ Develop Sustain 1-21. https://doi.org/10.1007/s10668-021-02073-w
  • Lam MK, Lee KT (2011) Mixed methanol–ethanol technology to produce greener biodiesel from waste cooking oil: A breakthrough for SO₄²⁻/SnO₂–SiO₂ catalyst. Fuel Process Technol 92(8). https://doi.org/10.1016/ j.fuproc.2011.04.012
  • Arzamendi G, Campo I, Arguinarena E, Sánchez M, Montes M, Gandía LM (2007) Synthesis of biodiesel with heterogeneous NaOH/alumina catalysts: comparison with homogeneous NaOH. Chem Eng J 134(1-3): 123-130. https://doi.org/10.1016/j.cej.2007.03.049
  • Musa IA (2016) The effects of alcohol to oil molar ratios and the type of alcohol on biodiesel production using transesterification process. Egypt J Pet 25(1):21-31. http://dx.doi.org/10.1016/j.ejpe.2015.06.007
  • Sanli H, Alptekin E, Canakci M (2019) Production of fuel quality ethyl ester biodiesel: 1. Laboratory-scale optimization of waste frying oil ethanolysis, 2. Pilot-scale production with the optimal reaction conditions. Waste Biomass Valori 10:1889-1898. https://doi.org/10.1007/s12649-018-0195-z
  • Aslan V, Eryilmaz T (2020) Polynomial regression method for optimization of biodiesel production from black mustard (Brassica nigra L.) seed oil using methanol, ethanol, NaOH, and KOH. Energy 209, 118386. https://doi.org/10.1016/j.energy.2020.118386
  • Ramírez-Verduzco LF, Hernández-Sánchez MJ (2024) Group contribution method for predicting viscosity of alkyl esters and biodiesel. Fuel 357, 129666. https://doi.org/10.1016/j.fuel.2023.129666
  • Corach J, Colman M, Sorichetti PA, Romano SD (2017) Kinematic viscosity of soybean biodiesel and diesel fossil fuel blends: Estimation from permittivity and temperature. Fuel 207:488-492. http://dx.doi.org/10.1016/j.fuel.2017.06.102
  • Sarin A, Sharma N, Devgan K, Singh M (2021) Study of kinematic viscosity and density of biodiesels exposed to radiations. Mater Today Proc, 46:5516-5522. https://doi.org/10.1016/j.matpr.2020.09.257
  • Ferreira AG, Talvera-Prieto NMC, Portugal AA, Moreira RJ (2021) Models for predicting viscosities of biodiesel fuels over extended ranges of temperature and pressure. Fuel 287, 119544. https://doi.org/10.1016/ j.fuel.2020.119544
  • Gülüm M, Bilgin A (2017) Measurements and empirical correlations in predicting biodiesel-diesel blends’ viscosity and density. Fuel 199:567-577. http://dx.doi.org/10.1016/j.fuel.2017.03.001
  • Bhuiya MMK, Rasul MG, Khan MMK, Ashwath N, Azad AK, Hazrat MA (2016) Prospects of 2nd generation biodiesel as a sustainable fuel–Part 2: Properties, performance and emission characteristics. Renew Sustain Energy Rev 55:1129-1146. http://dx.doi.org/10.1016/j.rser.2015.09.086
  • Ramírez-Verduzco LF, Rodríguez-Rodríguez JE, del Rayo Jaramillo-Jacob A (2012) Predicting cetane number, kinematic viscosity, density and higher heating value of biodiesel from its fatty acid methyl ester composition. Fuel 91(1):102-111. http://dx.doi.org/10.1016/j.fuel.2011.06.070
  • Sajjadi B, Raman AAA, Arandiyan H (2016) A comprehensive review on properties of edible and non-edible vegetable oil-based biodiesel: Composition, specifications and prediction models. Renew Sustain Energy Rev 63:62-92. http://dx.doi.org/10.1016/j.rser.2016.05.035
  • Bukkarapu KR, Krishnasamy A (2022) Predicting engine fuel properties of biodiesel and biodiesel-diesel blends using spectroscopy based approach. Fuel Process Technol 230, 107227. https://doi.org/10.1016/j.fuproc. 2022.107227
  • Mujtaba MA, Kalam MA, Masjuki HH, Razzaq L, Khan HM, Soudagar MEM, Gul M, Ahmed W, Raju VD, Kumar R, Ong HC (2021) Development of empirical correlations for density and viscosity estimation of ternary biodiesel blends. Renew Energy 179:1447-1457. https://doi.org/10.1016/j.renene.2021.07.121
  • Pham, MT, Hoang AT, Le AT, Al-Tawaha ARMS, Dong VH, Le VV (2018) Measurement and prediction of the density and viscosity of biodiesel blends. Int J Technol 9(5):1015-1026
  • Wang L, Wang H, Fan J, Han Z (2023) Synthesis, catalysts and enhancement technologies of biodiesel from oil feedstock–A review. Sci Total Environ, 903, 166982. https://doi.org/10.1016/j.scitotenv.2023.166982
  • Şahin S, Öğüt H (2018) Investigation of the effects of linseed oil biodiesel and diesel fuel blends on engine performance and exhaust emissions. Int J Automot Eng Technol 7(4):149-157
  • Danish M, Ahmad T, Ayoub M, Geremew B, Adeloju S (2020) Conversion of flaxseed oil into biodiesel using KOH catalyst: Optimization and characterization dataset. Data Brief 29, 105225. https://doi.org/10.1016/ j.renene.2019.03.036
  • Etim AO, Musonge P, Eloka-Eboka AC (2022) Process optimization of bio-alkaline catalysed transesterification of flax seed oil methyl ester. Sci Afr 16, e01275. https://doi.org/10.1016/j.sciaf.2022.e01275
  • Sanli H, Alptekin E, Canakci M (2019) Production of fuel quality ethyl ester biodiesel: 1. Laboratory-scale optimization of waste frying oil ethanolysis, 2. Pilot-scale production with the optimal reaction conditions. Waste Biomass Valori 10:1889-1898. https://doi.org/10.1007/s12649-018-0195-z
  • Farokhnia, A., Jokar, S. M., Parvasi, P., & Kim, A. S. (2022). A novel design for biodiesel production from methanol+ mutton bone fat mixture. Biotechnol Biofuels Bioprod 15(1), 130. https://doi.org/10.1186/s13068-022-02229-4
  • Sebayang AH, Ideris F, Silitonga AS, Shamsuddin AH, Zamri MFMA, Pulungan MA, Siahaan S, Alfansury, M, Kusumo F, Milano J (2023) Optimization of ultrasound-assisted oil extraction from Carica candamarcensis; A potential Oleaginous tropical seed oil for biodiesel production. Renew Energy, 211: 434-444. https://doi.org/ 10.1016/j.renene.2023.04.099
  • Sun X, Opulencia MJC, Alexandrovich TP, Khan A, Algarni M, Abdelrahman A (2022). Modeling and optimization of vegetable oil biodiesel production with heterogeneous nano catalytic process: Multi-layer perceptron, decision regression tree, and K-Nearest Neighbor methods. Environmental Technology & Innovation 27, 102794
  • Noipin K, Kumar S (2015) Optimization of ethyl ester production assisted by ultrasonic irradiation. Ultrason Sonochem 22:548-558. http://dx.doi.org/10.1016/j.ultsonch.2014.07.019
  • Alptekin E, Canakci M (2008) Determination of the density and the viscosities of biodiesel–diesel fuel blends. Renew Energy 33(12):2623-2630. https://doi.org/10.1016/j.renene.2008.02.020
  • Krishnamurthy KN, Sridhara SN, Kumar CA (2018) Synthesis and optimization of Hydnocarpus wightiana and dairy waste scum as feed stock for biodiesel production by using response surface methodology. Energy 153:1073-1086. https://doi.org/10.1016/j.energy.2018.04.068
  • Aslan V (2023) Fuel characterization, engine performance characteristics and emissions analysis of different mustard seed biodiesel: An overview. J Biotec 370:12-30. https://doi.org/10.1016/j.jbiotec.2023.05.006
  • Reyero I, Arzamendi G, Zabala S, Gandía LM (2015) Kinetics of the NaOH-catalyzed transesterification of sunflower oil with ethanol to produce biodiesel. Fuel Process Technol 129:147-155. http://dx.doi.org/10.1016/ j.fuproc.2014.09.008
  • Eze VC, Harvey AP, Phan AN (2015) Determination of the kinetics of biodiesel saponification in alcoholic hydroxide solutions. Fuel 140:724-730. http://dx.doi.org/10.1016/j.fuel.2014.10.001
  • Sultana S, Khalid A, Ahmad M, Zuhairi AA, Teong LK, Zafar M, Hassan FU (2014) The production, optimization, and characterization of biodiesel from a novel source: Sinapis alba L. Int J Green Energy 11(3):280-291. https://doi.org/10.1080/15435075.2013.772520
  • Muthukumaran C, Praniesh R, Navamani P, Swathi R, Sharmila G, Kumar NM (2017) Process optimization and kinetic modeling of biodiesel production using non-edible Madhuca indica oil. Fuel 195:217-225. http://dx.doi.org/10.1016/j.fuel.2017.01.060
  • Valle PW, Rezende TF, Souza RA, Fortes IC, Pasa VM (2009) Combination of fractional factorial and Doehlert experimental designs in biodiesel production: Ethanolysis of Raphanus sativus L. var. oleiferus stokes oil catalyzed by sodium ethoxide. Energy and Fuels 23(10):5219-5227. https://doi.org/10.1021/ef900468p
  • Silitonga AS, Masjuki HH, Ong HC, Yusaf T, Kusumo F, Mahlia TMI (2016) Synthesis and optimization of Hevea brasiliensis and Ricinus communis as feedstock for biodiesel production: A comparative study. Ind Crops Prod 85:274-286. http://dx.doi.org/10.1016/j.indcrop.2016.03.017.
  • Nain P, Jaiswal SK, Prakash NT, Prakash R, Gupta SK (2020) Influence of acyl acceptor blends on the ester yield and fuel properties of biodiesel generated by whole-cell catalysis of cottonseed oil. Fuel 259, 116258. https://doi.org/10.1016/j.fuel.2019.116258
  • Folayan AJ, Anawe PAL, Aladejare AE, Ayeni AO (2019) Experimental investigation of the effect of fatty acids configuration, chain length, branching and degree of unsaturation on biodiesel fuel properties obtained from lauric oils, high-oleic and high-linoleic vegetable oil biomass. Energy Rep 5:793-806. https://doi.org/10.1016/ j.egyr.2019.06.013
  • Ghazali WNMW, Mamat R, Masjuki HH, Najafi G (2015) Effects of biodiesel from different feedstocks on engine performance and emissions: A review. Renew Sustain Energy Rev 51:585-602. http://dx.doi.org/10.1016/ j.rser.2015.06.031
  • Hoekman SK, Broch A, Robbins C, Ceniceros E, Natarajan M (2012) Review of biodiesel composition, properties, and specifications. Renew Sustain Energy Rev 16(1):143-169. http://dx.doi.org/10.1016/ j.rser.2011.07.143
  • Llamas A, Al-Lal AM, García-Martínez MJ, Ortega MF, Llamas JF, Lapuerta M, Canoira L (2017) Polycyclic Aromatic Hydrocarbons (PAHs) produced in the combustion of fatty acid alkyl esters from different feedstocks: Quantification, statistical analysis and mechanisms of formation. Sci Total Environ 586:446-456. http://dx.doi.org/10.1016/j.scitotenv.2017.01.180.
There are 54 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering (Other)
Journal Section Research Articles
Authors

Volkan Aslan 0000-0002-5354-2474

Mehmet Karaca 0009-0007-6257-1465

Project Number 1919B012212243
Publication Date July 31, 2024
Submission Date April 18, 2024
Acceptance Date July 2, 2024
Published in Issue Year 2024 Volume: 4 Issue: 2

Cite

APA Aslan, V., & Karaca, M. (2024). Keten tohumu yağından üretilen metil ve etil esterlerin harmanlanması ile edilen karışım biyodizellerin yoğunluk, kinematik viskozite ve ısıl değerlerinin karşılaştırılması. Journal of Innovative Engineering and Natural Science, 4(2), 541-560. https://doi.org/10.61112/jiens.1470119


by.png
Journal of Innovative Engineering and Natural Science by İdris Karagöz is licensed under CC BY 4.0