Research Article
BibTex RIS Cite

Aeroelastic analysis of single–ply aramid and glass woven composite wing structures: numerical and experimental approaches

Year 2025, Volume: 5 Issue: 1, 371 - 385, 31.01.2025

Abstract

Aeroelasticity involves the study of the interaction among aerodynamic, inertial, and elastic forces, where flutter manifests as a dynamic phenomenon, and divergence poses a static problem. Lightweight composite structures, that are lighter and stronger, have been studied in the current aviation industry for decades. In this study, aramid and glass plain woven single-ply composite wing structures were used in order to investigate aeroelastic interactions. The experimental and numerical comparisons of the aeroelastic responses of the wing structures were performed. Moreover, Ansys ACP was utilized to design the composite wing structure. The Fluid-Structure Interaction analysis was performed by using Ansys Fluent and Mechanical. The bending frequency responses of the wings were compared with each other at a different angle of attack (AoA) and different velocities (0 – 40 m/s). Operational Modal Analysis (OMA) was studied, and aerodynamic tests were performed using a subsonic wind tunnel to obtain the structural response of the composite wings. The flutter speed index (FSI) was determined for wings depending on the bending frequency. The aeroelastic results of computational and experimental methods for different composite wing structures were compared. The results show that the bending frequency of the aramid wing is higher than the glass wing. Also, the flutter speed index results for the aramid wing are in a safer region than the glass wing for different operational conditions.

References

  • Eryilmaz O, Sancak E (2021) Effect of silane coupling treatments on mechanical properties of epoxy based high-strength carbon fiber regular (2 x 2) braided fabric composites. Polymer Composites 4212:6455-6466. https://doi.org/10.1002/pc.26311
  • Eryilmaz O et al (2024) FEA and experimental ultimate burst pressure analysis of type IV composite pressure vessels manufactured by robot-assisted radial braiding technique. Int Journal of Hydrogen Energy 50:597-612. https://doi.org/10.1016/j.ijhydene.2023.07.302
  • Eryilmaz O, Kocak ED, Sancak E (2023) 8-Braided natural fiber preforms. Mohamad M (ed) Multiscale Textile Preforms and Structures for Natural Fiber Composites. Woodhead Publishing, pp 221-237. https://doi.org/10.1016/B978-0-323-95329-0.00007-7
  • Yildiz Z, Eryilmaz O, (2023) 12-Preimpregnated natural fiber preforms. Mohamad M (ed) Multiscale Textile Preforms and Structures for Natural Fiber Composites. Woodhead Publishing, pp 327-340. https://doi.org/10.1016/B978-0-323-95329-0.00003-X
  • Eryilmaz O (2024) Revalorization of cellulosic fiber extracted from the waste stem of Brassica oleracea var. botrytis L. (cauliflower) by characterizing for potential composite applications. Int Journal of Biological Macromolecules 266:131086. https://doi.org/10.1016/j.ijbiomac.2024.131086
  • Eryilmaz O et al (2020) Investigation of the Water–Based Ink Hold onto the Thermoplastic Composites Reinforced with Sisal Fibers. Journal of Textile Science Fashion Technology 53. https://dx.doi.org/10.33552/JTSFT.2020.05.000612
  • Sen M, Eryilmaz O, Bakir B (2024) Micro drilling characterization of the carbon and carbon–aramid (hybrid) composites. Polymer Composites 456:5449-5459. https://doi.org/10.1002/pc.28138
  • Öz M, Yıldırım Y, Eryılmaz O (2021) Investigation of Spacer Fabric as Vibration Reduction Material in Rocket Avionic Systems by Using Finite Element Method. in 8. International Fiber and Polymer Research Symposium (8. ULPAS). Eskişehir.
  • Sen M, Eryilmaz O, Bakir B (2024) Multi-objective Process Optimization of Micro-drilling Parameters on Carbon and Carbon–Aramid (Hybrid) Fabric Composites. Arabian Journal for Science and Engineering. https://doi.org/10.1007/s13369-024-09616-z
  • Eryılmaz O, Ovalı S (2024) Investigation and Analysis of New Fiber from Allium fistulosum L. (Scallion) Plant’s Tassel and its Suitability for Fiber-Reinforced Composites. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 291:51-66. https://doi.org/10.17482/uumfd.1410520
  • Ovalı S, Eryılmaz O (2024) Physical and Chemical Properties of a New Cellulose Fiber Extracted from the Mentha pulegium L. (Pennyroyal) Plant’s Stem. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi 391:211-220. https://doi.org/10.21605/cukurovaumfd.1460444
  • Ovalı S, Eryılmaz O, Uyanık S (2024) Exploring the potential of sustainable natural cellulosic fiber from Sorghum bicolor (Sorghum vulgare var. technicus) stem for textile and composite applications. Cellulose 31:3289-3302. https://doi.org/10.1007/s10570-024-05800-4
  • Eryılmaz O (2022) Havacılık taşıtlarındaki uygulamalar için karbon lif takviyeli kompozit yüksek basınç/yakıt tankı tasarımı ve üretimi. Dissertation, Marmara University.
  • Eberhardt B et al (2022) Inline contactless optical measuring of glass fiber properties and retrofitting an adaptive cooling system for glass fiber production. in Aachen Reinforced. Aachen, Germany
  • Eryılmaz O et al (2020) Elyaf Sarma Yöntemi ile Üretilmiş Cam Lifi Takviyeli Kompozit Roket Gövdesinin Paraşüt Mekanizmasının FR Kumaşlar ile Yalıtılması. in Uşak Üniversitesi TTO 1.Ar-Ge ve Tasarım Proje Pazarı. Uşak, Türkiye
  • Mukhopadhyay V (2003) Historical Perspective on Analysis and Control of Aeroelastic Responses. Journal of Guidance, Control, and Dynamics 265:673-684. https://doi.org/10.2514/2.5108
  • Irani S, Sazesh S (2013) A new flutter speed analysis method using stochastic approach. Journal of Fluids and Structures 40:105-114. https://doi.org/10.1016/j.jfluidstructs.2013.03.018
  • Eryilmaz O, Öz M (2023) Aeroelastic Analysis of the Composite Wing Reinforced with Carbon Fiber. in Çankaya International Congress on Scientific Research. Ankara
  • Fagley C, Seidel J, McLaughlin T (2016) Cyber-physical flexible wing for aeroelastic investigations of stall and classical flutter. Journal of Fluids and Structures 67:34-47. https://doi.org/10.1016/j.jfluidstructs.2016.07.021
  • Scanlan RH (2000) Motion-Related Body-Force Functions in Two-Dimensional Low-Speed Flow. Journal of Fluids and Structures 141:49-63. https://doi.org/10.1006/jfls.1999.0252
  • Peters DA (2008) Two-dimensional incompressible unsteady airfoil theory—An overview. Journal of Fluids and Structures 243:295-312. https://doi.org/10.1016/j.jfluidstructs.2007.09.001
  • Murua J, R Palacios, JMR Graham (2012) Applications of the unsteady vortex-lattice method in aircraft aeroelasticity and flight dynamics. Progress in Aerospace Sciences 55:46-72. https://doi.org/10.1016/j.paerosci.2012.06.001
  • Chai Y et al (2021) Aeroelastic analysis and flutter control of wings and panels: A review. International Journal of Mechanical System Dynamics 11:5-34. https://doi.org/10.1002/msd2.12015
  • Li W et al (2007) Thermal flutter analysis of large-scale space structures based on finite element method. International Journal for Numerical Methods in Engineering 695:887-907. https://doi.org/10.1002/nme.1793
  • Sundresan M et al (2012) Review of Aeroelasticity Testing Technology. Procedia Engineering 38:2297-2311. https://doi.org/10.1016/j.proeng.2012.06.276
  • Pagani A et al (2021) Static and dynamic testing of a full-composite VLA by using digital image correlation and output-only ground vibration testing. Aerospace Science and Technology 112, 106632. https://doi.org/10.1016/j.ast.2021.106632
  • Aenlle ML, Brincker R (2013) Modal scaling in operational modal analysis using a finite element model. International Journal of Mechanical Sciences 76:86-101. https://doi.org/10.1016/j.ijmecsci.2013.09.003
  • Jianghua G et al (2018) Dynamic analysis of laminated doubly-curved shells with general boundary conditions by means of a domain decomposition method. International Journal of Mechanical Sciences 138:139:159-186. https://doi.org/10.1016/j.ijmecsci.2018.02.004
  • Gallman JW, Batina JT, Yang TY (1988) Computational transonic flutter boundary tracking procedure. Journal of Aircraft 253:263-270. https://doi.org/10.2514/3.45587
  • Noroozi M, A Zajkani, M Ghadiri (2021) Dynamic plastic impact behavior of CNTs/fiber/polymer multiscale laminated composite doubly curved shells. International Journal of Mechanical Sciences 195, 106223. https://doi.org/10.1016/j.ijmecsci.2020.106223
  • Rumayshah KK, Prayoga A, Agoes Moelyadi M (2018) Design of High Altitude Long Endurance UAV: Structural Analysis of Composite Wing using Finite Element Method. Journal of Physics: Conference Series 10051, 012025. https://doi.org/10.1088/1742-6596/1005/1/012025
  • Yuan W, Sandhu R, Poirel D (2021) Fully coupled aeroelastic analyses of wing flutter towards application to complex aircraft configurations. Journal of Aerospace Engineering 342, 04020117. https://doi.org/10.1061/(ASCE)AS.1943-5525.0001232
  • Marques AN et al (2020) Multifidelity Method for Locating Aeroelastic Flutter Boundaries. AIAA Journal 584:1772-1784. https://doi.org/10.2514/1.J058663
  • Chaitanya J et al (2017) Vibrational characteristics of AGARD 445.6 wing in transonic flow. in IOP Conference Series: Materials Science and Engineering. India.
  • Dowell E H et al (1989) Unsteady transonic aerodynamics and aeroelasticity. Howard C (ed) A modern course in aeroelasticity. Springer Netherlands:Dordrecht, pp 443-501. https://doi.org/10.1007/978-94-015-7858-5_9
  • Theodorsen T (1979) General Theory of Aerodynamic Instability and the Mechanism of Flutter. NASA Ames Research Center Classical Aerodynamics Theory pp 291-302.
  • Jan R et al (2014) Aeroelasticity and Loads Models. Jan R (Ed) Introduction to Aircraft Aeroelasticity and Loads, pp 465-474. https://doi.org/10.1002/9781118700440.ch21
  • Rivera J et al (1992) NACA 0012 benchmark model experimental flutter results with unsteadypressure distributions. in 33rd Structures, Structural Dynamics and Materials Conference. Dallas.
  • Khatir T et al (2017) Experimental and numerical investigation of flutter phenomenon of an aitcraft wing (NACA 0012). Mechanics 234:562-566. https://doi.org/10.5755/j01.mech.23.4.15175

Tek katlı aramid ve cam kompozit kanat yapılarının aeroelastik analizi: nümerik ve deneysel yaklaşımlar

Year 2025, Volume: 5 Issue: 1, 371 - 385, 31.01.2025

Abstract

Aeroelastisite, aerodinamik, atalet ve elastik kuvvetler arasındaki etkileşimin incelenmesini içerir. Burada çırpıntı dinamik bir fenomen olarak ortaya çıkar ve yapısal sapma statik bir sorun teşkil eder. Daha hafif ve daha mukavemetli olan kompozit yapılar, mevcut havacılık endüstrisinde onlarca yıldır çalışılmaktadır. Bu çalışmada, aeroelastik etkileşimleri araştırmak için aramid ve cam dokuma tek katlı kompozit kanat yapıları kullanılmıştır. Kanat yapılarının aeroelastik yanıtlarının deneysel ve sayısal karşılaştırmaları yapılmıştır. Kompozit kanat yapısını tasarlamak için Ansys ACP kullanılmıştır. Akışkan-Yapı Etkileşimi analizi Ansys Fluent ve Mechanical kullanılarak gerçekleştirilmiştir. Kanatların eğilme frekansı tepkileri farklı hücum açılarında (AoA) ve farklı hızlarda (0 - 40 m/s) birbirleriyle karşılaştırılmıştır. Operasyonel Modal Analiz (OMA) çalışılmış ve kompozit kanatların yapısal tepkisini elde etmek için ses altı rüzgar tüneli kullanılarak aerodinamik testler gerçekleştirilmiştir. Eğilme frekansına bağlı olarak kanatlar için çırpıntı hızı indeksi (FSI) belirlenmiştir. Farklı kompozit kanat yapıları için nümerik ve deneysel yöntemlerin aeroelastik sonuçları karşılaştırılmıştır. Sonuçlar, aramid kanadın eğilme frekansının cam kanada göre daha yüksek olduğunu göstermektedir. Ayrıca, aramid kanat için çırpıntı hızı indeksi (FSI) sonuçları, farklı operasyonel koşullar için cam kanada göre daha güvenli alanda olduğunu göstermiştir.

References

  • Eryilmaz O, Sancak E (2021) Effect of silane coupling treatments on mechanical properties of epoxy based high-strength carbon fiber regular (2 x 2) braided fabric composites. Polymer Composites 4212:6455-6466. https://doi.org/10.1002/pc.26311
  • Eryilmaz O et al (2024) FEA and experimental ultimate burst pressure analysis of type IV composite pressure vessels manufactured by robot-assisted radial braiding technique. Int Journal of Hydrogen Energy 50:597-612. https://doi.org/10.1016/j.ijhydene.2023.07.302
  • Eryilmaz O, Kocak ED, Sancak E (2023) 8-Braided natural fiber preforms. Mohamad M (ed) Multiscale Textile Preforms and Structures for Natural Fiber Composites. Woodhead Publishing, pp 221-237. https://doi.org/10.1016/B978-0-323-95329-0.00007-7
  • Yildiz Z, Eryilmaz O, (2023) 12-Preimpregnated natural fiber preforms. Mohamad M (ed) Multiscale Textile Preforms and Structures for Natural Fiber Composites. Woodhead Publishing, pp 327-340. https://doi.org/10.1016/B978-0-323-95329-0.00003-X
  • Eryilmaz O (2024) Revalorization of cellulosic fiber extracted from the waste stem of Brassica oleracea var. botrytis L. (cauliflower) by characterizing for potential composite applications. Int Journal of Biological Macromolecules 266:131086. https://doi.org/10.1016/j.ijbiomac.2024.131086
  • Eryilmaz O et al (2020) Investigation of the Water–Based Ink Hold onto the Thermoplastic Composites Reinforced with Sisal Fibers. Journal of Textile Science Fashion Technology 53. https://dx.doi.org/10.33552/JTSFT.2020.05.000612
  • Sen M, Eryilmaz O, Bakir B (2024) Micro drilling characterization of the carbon and carbon–aramid (hybrid) composites. Polymer Composites 456:5449-5459. https://doi.org/10.1002/pc.28138
  • Öz M, Yıldırım Y, Eryılmaz O (2021) Investigation of Spacer Fabric as Vibration Reduction Material in Rocket Avionic Systems by Using Finite Element Method. in 8. International Fiber and Polymer Research Symposium (8. ULPAS). Eskişehir.
  • Sen M, Eryilmaz O, Bakir B (2024) Multi-objective Process Optimization of Micro-drilling Parameters on Carbon and Carbon–Aramid (Hybrid) Fabric Composites. Arabian Journal for Science and Engineering. https://doi.org/10.1007/s13369-024-09616-z
  • Eryılmaz O, Ovalı S (2024) Investigation and Analysis of New Fiber from Allium fistulosum L. (Scallion) Plant’s Tassel and its Suitability for Fiber-Reinforced Composites. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 291:51-66. https://doi.org/10.17482/uumfd.1410520
  • Ovalı S, Eryılmaz O (2024) Physical and Chemical Properties of a New Cellulose Fiber Extracted from the Mentha pulegium L. (Pennyroyal) Plant’s Stem. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi 391:211-220. https://doi.org/10.21605/cukurovaumfd.1460444
  • Ovalı S, Eryılmaz O, Uyanık S (2024) Exploring the potential of sustainable natural cellulosic fiber from Sorghum bicolor (Sorghum vulgare var. technicus) stem for textile and composite applications. Cellulose 31:3289-3302. https://doi.org/10.1007/s10570-024-05800-4
  • Eryılmaz O (2022) Havacılık taşıtlarındaki uygulamalar için karbon lif takviyeli kompozit yüksek basınç/yakıt tankı tasarımı ve üretimi. Dissertation, Marmara University.
  • Eberhardt B et al (2022) Inline contactless optical measuring of glass fiber properties and retrofitting an adaptive cooling system for glass fiber production. in Aachen Reinforced. Aachen, Germany
  • Eryılmaz O et al (2020) Elyaf Sarma Yöntemi ile Üretilmiş Cam Lifi Takviyeli Kompozit Roket Gövdesinin Paraşüt Mekanizmasının FR Kumaşlar ile Yalıtılması. in Uşak Üniversitesi TTO 1.Ar-Ge ve Tasarım Proje Pazarı. Uşak, Türkiye
  • Mukhopadhyay V (2003) Historical Perspective on Analysis and Control of Aeroelastic Responses. Journal of Guidance, Control, and Dynamics 265:673-684. https://doi.org/10.2514/2.5108
  • Irani S, Sazesh S (2013) A new flutter speed analysis method using stochastic approach. Journal of Fluids and Structures 40:105-114. https://doi.org/10.1016/j.jfluidstructs.2013.03.018
  • Eryilmaz O, Öz M (2023) Aeroelastic Analysis of the Composite Wing Reinforced with Carbon Fiber. in Çankaya International Congress on Scientific Research. Ankara
  • Fagley C, Seidel J, McLaughlin T (2016) Cyber-physical flexible wing for aeroelastic investigations of stall and classical flutter. Journal of Fluids and Structures 67:34-47. https://doi.org/10.1016/j.jfluidstructs.2016.07.021
  • Scanlan RH (2000) Motion-Related Body-Force Functions in Two-Dimensional Low-Speed Flow. Journal of Fluids and Structures 141:49-63. https://doi.org/10.1006/jfls.1999.0252
  • Peters DA (2008) Two-dimensional incompressible unsteady airfoil theory—An overview. Journal of Fluids and Structures 243:295-312. https://doi.org/10.1016/j.jfluidstructs.2007.09.001
  • Murua J, R Palacios, JMR Graham (2012) Applications of the unsteady vortex-lattice method in aircraft aeroelasticity and flight dynamics. Progress in Aerospace Sciences 55:46-72. https://doi.org/10.1016/j.paerosci.2012.06.001
  • Chai Y et al (2021) Aeroelastic analysis and flutter control of wings and panels: A review. International Journal of Mechanical System Dynamics 11:5-34. https://doi.org/10.1002/msd2.12015
  • Li W et al (2007) Thermal flutter analysis of large-scale space structures based on finite element method. International Journal for Numerical Methods in Engineering 695:887-907. https://doi.org/10.1002/nme.1793
  • Sundresan M et al (2012) Review of Aeroelasticity Testing Technology. Procedia Engineering 38:2297-2311. https://doi.org/10.1016/j.proeng.2012.06.276
  • Pagani A et al (2021) Static and dynamic testing of a full-composite VLA by using digital image correlation and output-only ground vibration testing. Aerospace Science and Technology 112, 106632. https://doi.org/10.1016/j.ast.2021.106632
  • Aenlle ML, Brincker R (2013) Modal scaling in operational modal analysis using a finite element model. International Journal of Mechanical Sciences 76:86-101. https://doi.org/10.1016/j.ijmecsci.2013.09.003
  • Jianghua G et al (2018) Dynamic analysis of laminated doubly-curved shells with general boundary conditions by means of a domain decomposition method. International Journal of Mechanical Sciences 138:139:159-186. https://doi.org/10.1016/j.ijmecsci.2018.02.004
  • Gallman JW, Batina JT, Yang TY (1988) Computational transonic flutter boundary tracking procedure. Journal of Aircraft 253:263-270. https://doi.org/10.2514/3.45587
  • Noroozi M, A Zajkani, M Ghadiri (2021) Dynamic plastic impact behavior of CNTs/fiber/polymer multiscale laminated composite doubly curved shells. International Journal of Mechanical Sciences 195, 106223. https://doi.org/10.1016/j.ijmecsci.2020.106223
  • Rumayshah KK, Prayoga A, Agoes Moelyadi M (2018) Design of High Altitude Long Endurance UAV: Structural Analysis of Composite Wing using Finite Element Method. Journal of Physics: Conference Series 10051, 012025. https://doi.org/10.1088/1742-6596/1005/1/012025
  • Yuan W, Sandhu R, Poirel D (2021) Fully coupled aeroelastic analyses of wing flutter towards application to complex aircraft configurations. Journal of Aerospace Engineering 342, 04020117. https://doi.org/10.1061/(ASCE)AS.1943-5525.0001232
  • Marques AN et al (2020) Multifidelity Method for Locating Aeroelastic Flutter Boundaries. AIAA Journal 584:1772-1784. https://doi.org/10.2514/1.J058663
  • Chaitanya J et al (2017) Vibrational characteristics of AGARD 445.6 wing in transonic flow. in IOP Conference Series: Materials Science and Engineering. India.
  • Dowell E H et al (1989) Unsteady transonic aerodynamics and aeroelasticity. Howard C (ed) A modern course in aeroelasticity. Springer Netherlands:Dordrecht, pp 443-501. https://doi.org/10.1007/978-94-015-7858-5_9
  • Theodorsen T (1979) General Theory of Aerodynamic Instability and the Mechanism of Flutter. NASA Ames Research Center Classical Aerodynamics Theory pp 291-302.
  • Jan R et al (2014) Aeroelasticity and Loads Models. Jan R (Ed) Introduction to Aircraft Aeroelasticity and Loads, pp 465-474. https://doi.org/10.1002/9781118700440.ch21
  • Rivera J et al (1992) NACA 0012 benchmark model experimental flutter results with unsteadypressure distributions. in 33rd Structures, Structural Dynamics and Materials Conference. Dallas.
  • Khatir T et al (2017) Experimental and numerical investigation of flutter phenomenon of an aitcraft wing (NACA 0012). Mechanics 234:562-566. https://doi.org/10.5755/j01.mech.23.4.15175
There are 39 citations in total.

Details

Primary Language English
Subjects Dynamics, Vibration and Vibration Control, Mechanical Engineering (Other), Composite and Hybrid Materials
Journal Section Research Articles
Authors

Mehmet Emre Oz 0000-0003-1673-8619

Bulent Ekici 0000-0001-8967-0649

Oğuz Eryılmaz 0000-0003-0005-1142

Publication Date January 31, 2025
Submission Date September 16, 2024
Acceptance Date January 24, 2025
Published in Issue Year 2025 Volume: 5 Issue: 1

Cite

APA Oz, M. E., Ekici, B., & Eryılmaz, O. (2025). Aeroelastic analysis of single–ply aramid and glass woven composite wing structures: numerical and experimental approaches. Journal of Innovative Engineering and Natural Science, 5(1), 371-385.


by.png
Journal of Innovative Engineering and Natural Science by İdris Karagöz is licensed under CC BY 4.0