Research Article
BibTex RIS Cite

Adsorption potential of spherical ZnO particles for sufficient antibiotic removal: isotherm, kinetic and thermodynamics

Year 2025, Volume: 5 Issue: 1, 19 - 28
https://doi.org/10.61112/jiens.1562818

Abstract

Due to the improvements of pharmaceutical industry, tetracycline (TC) is commonly detected in natural water environments, resulting in significant adverse impacts on living species. In this study, the TC adsorption over commercial spherical zinc oxide (ZnO) samples was systematically examined by considering adsorption isotherm models, kinetic model and thermodynamic behavior. The Langmuir kinetic model displayed the highest correlation coefficient (R2 = 0.97) with a maximum adsorption capacity of 86.35 mg/g. According to the results of the kinetic studies, the adsorption could be driven by both the bulk transfer of adsorbate molecules towards the adsorbent surface within the solution and chemisorption on the surface and inside the pores. In addition, the TC adsorption on the ZnO particles promoted by increasing temperature. The commercial spherical zinc oxide can be considered as a sustainable strategy to eliminate the emerging toxic contaminant of tetracycline.

References

  • da Silva Medeiros DCC, Nzediegwu C, Benally C, Messele SA, Kwak JH, Naeth MA et al (2022) Pristine and engineered biochar for the removal of contaminants co-existing in several types of industrial wastewaters: a critical review. Sci Total Environ. 809,151120. https://doi.org/10.1016/j.scitotenv.2021.151120
  • Teodosiu C, Gilca AF, Barjoveanu G, Fiore S (2018) Emerging pollutants removal through advanced drinking water treatment: A review on processes and environmental performances assessment. J. Clean. Prod. 197, 1210-1221. https://doi.org/10.1016/j.jclepro.2018.06.247
  • Ni T, Feng H, Tang J, Wang J, Yu J, Yi Y, Tang L (2022) A novel electrocatalytic system with high reactive chlorine species utilization capacity to degrade tetracycline in marine aquaculture wastewater. Chemosphere 300, 134449. https://doi.org/10.1016/j.chemosphere.2022.134449
  • Charuaud L, Jarde E, Jaffrezic A, Thomas MF, Le Bot B (2019) Veterinary pharmaceutical residues from natural water to tap water: sales, occurrence and fate. J. Hazard. Mater. 361, 169-186. https://doi.org/10.1016/j.jhazmat.2018.08.075
  • Başlayıcı S, Gulen B, Bugdayci, M, Demircivi, P (2023) Facile synthesis of silicon carbide/hydroxyapatite composites through ball-mill for enhancing adsorption of tetracycline. International J. Environ. Anal. Chem. 1-19. https://doi.org/10.1080/03067319.2023.2229737
  • Dai Y, Li J, Shan D (2020) Adsorption of tetracycline in aqueous solution by biochar derived from waste Auricularia auricula dregs. Chemosphere 238, 124432. doi: 10.1016/J.CHEMOSPHERE.2019.124432.
  • Kanmaz N, Buğdaycı M, & Demirçivi P (2023) Solvent-free mechanochemical synthesis of TiO2-ethyl cellulose biocomposite for adsorption of tetracycline and organic dyes. J. Mol. Liq. 378, 121643. https://doi.org/10.1016/j.molliq.2023.121643
  • Gopal G, Alex S A, Chandrasekaran N, & Mukherjee A (2020) A review on tetracycline removal from aqueous systems by advanced treatment techniques. RSC advances 10(45), 27081-27095. https://doi.org/10.1039/D0RA04264A
  • Yang B, Wei Y, Liu Q, Luo Y, Qiu S, Shi Z (2019) Polyvinylpyrrolidone functionalized magnetic graphene-based composites for highly efficient removal of lead from wastewater. Colloids Surf. A: Physicochem. Eng. 582, 123927. https://doi.org/10.1016/j.colsurfa.2019.123927
  • Kanmaz N, Buğdaycı M, Demirçivi, P (2023) Investigation on structural and adsorptive features of BaO modified zeolite powders prepared by ball milling technique: Removal of tetracycline and various organic contaminants. MICROPOR MESOPOR MAT. 354, 112566. https://doi.org/10.1016/j.micromeso.2023.112566
  • Priya SS, Radha K V (2017) A review on the adsorption studies of tetracycline onto various types of adsorbents. CHEM ENG COMMUN. 204(8), 821-839. https://doi.org/10.1080/00986445.2015.1065820
  • Nebaghe K C, El Boundati Y, Ziat K, Naji A, Rghioui, L, Saidi M (2016). Comparison of linear and non-linear method for determination of optimum equilibrium isotherm for adsorption of copper (II) onto treated Martil sand. Fluid Ph. Equilib. 430, 188-194. https://doi.org/10.1016/j.fluid.2016.10.003
  • Yang W, Han Y, Li C, Zhu L, Shi L, Tang W, Li Z (2019). Shapeable three-dimensional CMC aerogels decorated with Ni/Co-MOF for rapid and highly efficient tetracycline hydrochloride removal. J. Chem. Eng. 375, 122076. https://doi.org/10.1016/j.cej.2019.122076
  • Karthikeyan G, Anbalagan K, Andal NM (2004). Adsorption dynamics and equilibrium studies of Zn (II) onto chitosan. J. Chem. Sci.116, 119-127. https://doi.org/10.1007/BF02708205
  • Duan YT, Yao Y, Ameta RK (2023). Removal and recovering of anionic and cationic dyes using Neem Leaf ash prepared at 250, 500 and 750° C: Analyzed by adsorption isotherm and physicochemical parameters. J. Mol. Liq. 370, 121012. https://doi.org/10.1016/j.molliq.2022.121012
  • Adsorption Technology in Water Treatment in Fundamentals, Processes, and Modeling (2012), De Gruyter, 123–168. https://doi.org/10.1515/9783110240238.123
  • Fan B, Tan Y, Wang J, Zhang B, Peng Y, Yuan C, Cui S (2021) Application of magnetic composites in removal of tetracycline through adsorption and advanced oxidation processes (AOPs): a review. Processes 9(9), 1644. https://doi.org/10.3390/pr9091644
  • Lei C, Pi M, Jiang C, Cheng B, Yu J (2017) Synthesis of hierarchical porous zinc oxide (ZnO) microspheres with highly efficient adsorption of Congo red. J. Colloid Interface Sci. 490, 242-251. https://doi.org/10.1016/j.jcis.2016.11.049
  • Ranjbari A, Kim J, Kim JH, Yu J, Demeestere K, Heynderickx, PM (2023) Enhancement of commercial ZnO adsorption and photocatalytic degradation capacity of methylene blue by oxygen vacancy modification: Kinetic study. Catal. Today, 413, 113976. https://doi.org/10.1016/j.cattod.2022.12.007
  • Sharma M, Singh J, Hazra S, Basu S (2019) Adsorption of heavy metal ions by mesoporous ZnO and TiO2@ ZnO monoliths: adsorption and kinetic studies. Microchem. J. 145, 105-112. https://doi.org/10.1016/j.microc.2018.10.026
  • Morales-Serrato D, Torres-Pérez J, de Jesús Ruíz-Baltazar Á, Reyes-López SY (2021) Adsorbent materials for emerging contaminant (tetracycline) removal. Int. J. Res. 9, 446-491. https://doi.org/10.29121/granthaalayah.v9.i4.2021.3847
  • Ben SK, Gupta S, Raj KK, Chandra V (2023) Adsorption of malachite green from polyaniline facilitated cobalt phosphate nanocomposite from aqueous solution. Chem. Phys. Lett. 820, 140469. https://doi.org/10.1016/j.cplett.2023.140469
  • Hojjati-Najafabadi A, Esfahani PN, Davar F, Aminabhavi TM, Vasseghian, Y (2023) Adsorptive removal of malachite green using novel GO@ ZnO-NiFe2O4-αAl2O3 nanocomposites. J. Chem. Eng. 471, 144485.https://doi.org/10.1016/j.cej.2023.144485

Küresel ZnO partiküllerinin yeterli antibiyotik giderimi için adsorpsiyon potansiyeli: izoterm, kinetik ve termodinamik

Year 2025, Volume: 5 Issue: 1, 19 - 28
https://doi.org/10.61112/jiens.1562818

Abstract

İlaç endüstrisinin gelişimi nedeniyle, tetracycline (TC) doğal su ortamlarında yaygın olarak tespit edilmektedir ve bu da canlı türleri üzerinde önemli olumsuz etkilere yol açmaktadır. Bu çalışmada, ticari küresel çinko oksit (ZnO) örnekleri üzerindeki TC adsorpsiyonu, adsorpsiyon izoterm modeli, kinetik model ve termodinamik davranışı açıklamak için sistematik olarak incelendi. Langmuir kinetik modeli, maksimum 86.35 mg/g adsorpsiyon kapasitesi ile en yüksek korelasyon katsayısını (R2 = 0.97) gösterdi. Kinetik çalışmaların sonuçlarına göre, ZnO örneklerinde tetrasiklin adsorpsiyonu için Pseudo ikinci dereceden kinetik modelinin uygun olduğu, kimyasal adsorpsiyon adımının daha etkili bir mekanizma olduğunu göstermektedir. Ayrıca, ZnO parçacıkları üzerindeki TC adsorpsiyonu sıcaklığın artmasıyla teşvik edildi. Ticari küresel çinko oksit, ortaya çıkan toksik kirletici tetracycline'i ortadan kaldırmak için sürdürülebilir bir strateji olarak düşünülebilir.

References

  • da Silva Medeiros DCC, Nzediegwu C, Benally C, Messele SA, Kwak JH, Naeth MA et al (2022) Pristine and engineered biochar for the removal of contaminants co-existing in several types of industrial wastewaters: a critical review. Sci Total Environ. 809,151120. https://doi.org/10.1016/j.scitotenv.2021.151120
  • Teodosiu C, Gilca AF, Barjoveanu G, Fiore S (2018) Emerging pollutants removal through advanced drinking water treatment: A review on processes and environmental performances assessment. J. Clean. Prod. 197, 1210-1221. https://doi.org/10.1016/j.jclepro.2018.06.247
  • Ni T, Feng H, Tang J, Wang J, Yu J, Yi Y, Tang L (2022) A novel electrocatalytic system with high reactive chlorine species utilization capacity to degrade tetracycline in marine aquaculture wastewater. Chemosphere 300, 134449. https://doi.org/10.1016/j.chemosphere.2022.134449
  • Charuaud L, Jarde E, Jaffrezic A, Thomas MF, Le Bot B (2019) Veterinary pharmaceutical residues from natural water to tap water: sales, occurrence and fate. J. Hazard. Mater. 361, 169-186. https://doi.org/10.1016/j.jhazmat.2018.08.075
  • Başlayıcı S, Gulen B, Bugdayci, M, Demircivi, P (2023) Facile synthesis of silicon carbide/hydroxyapatite composites through ball-mill for enhancing adsorption of tetracycline. International J. Environ. Anal. Chem. 1-19. https://doi.org/10.1080/03067319.2023.2229737
  • Dai Y, Li J, Shan D (2020) Adsorption of tetracycline in aqueous solution by biochar derived from waste Auricularia auricula dregs. Chemosphere 238, 124432. doi: 10.1016/J.CHEMOSPHERE.2019.124432.
  • Kanmaz N, Buğdaycı M, & Demirçivi P (2023) Solvent-free mechanochemical synthesis of TiO2-ethyl cellulose biocomposite for adsorption of tetracycline and organic dyes. J. Mol. Liq. 378, 121643. https://doi.org/10.1016/j.molliq.2023.121643
  • Gopal G, Alex S A, Chandrasekaran N, & Mukherjee A (2020) A review on tetracycline removal from aqueous systems by advanced treatment techniques. RSC advances 10(45), 27081-27095. https://doi.org/10.1039/D0RA04264A
  • Yang B, Wei Y, Liu Q, Luo Y, Qiu S, Shi Z (2019) Polyvinylpyrrolidone functionalized magnetic graphene-based composites for highly efficient removal of lead from wastewater. Colloids Surf. A: Physicochem. Eng. 582, 123927. https://doi.org/10.1016/j.colsurfa.2019.123927
  • Kanmaz N, Buğdaycı M, Demirçivi, P (2023) Investigation on structural and adsorptive features of BaO modified zeolite powders prepared by ball milling technique: Removal of tetracycline and various organic contaminants. MICROPOR MESOPOR MAT. 354, 112566. https://doi.org/10.1016/j.micromeso.2023.112566
  • Priya SS, Radha K V (2017) A review on the adsorption studies of tetracycline onto various types of adsorbents. CHEM ENG COMMUN. 204(8), 821-839. https://doi.org/10.1080/00986445.2015.1065820
  • Nebaghe K C, El Boundati Y, Ziat K, Naji A, Rghioui, L, Saidi M (2016). Comparison of linear and non-linear method for determination of optimum equilibrium isotherm for adsorption of copper (II) onto treated Martil sand. Fluid Ph. Equilib. 430, 188-194. https://doi.org/10.1016/j.fluid.2016.10.003
  • Yang W, Han Y, Li C, Zhu L, Shi L, Tang W, Li Z (2019). Shapeable three-dimensional CMC aerogels decorated with Ni/Co-MOF for rapid and highly efficient tetracycline hydrochloride removal. J. Chem. Eng. 375, 122076. https://doi.org/10.1016/j.cej.2019.122076
  • Karthikeyan G, Anbalagan K, Andal NM (2004). Adsorption dynamics and equilibrium studies of Zn (II) onto chitosan. J. Chem. Sci.116, 119-127. https://doi.org/10.1007/BF02708205
  • Duan YT, Yao Y, Ameta RK (2023). Removal and recovering of anionic and cationic dyes using Neem Leaf ash prepared at 250, 500 and 750° C: Analyzed by adsorption isotherm and physicochemical parameters. J. Mol. Liq. 370, 121012. https://doi.org/10.1016/j.molliq.2022.121012
  • Adsorption Technology in Water Treatment in Fundamentals, Processes, and Modeling (2012), De Gruyter, 123–168. https://doi.org/10.1515/9783110240238.123
  • Fan B, Tan Y, Wang J, Zhang B, Peng Y, Yuan C, Cui S (2021) Application of magnetic composites in removal of tetracycline through adsorption and advanced oxidation processes (AOPs): a review. Processes 9(9), 1644. https://doi.org/10.3390/pr9091644
  • Lei C, Pi M, Jiang C, Cheng B, Yu J (2017) Synthesis of hierarchical porous zinc oxide (ZnO) microspheres with highly efficient adsorption of Congo red. J. Colloid Interface Sci. 490, 242-251. https://doi.org/10.1016/j.jcis.2016.11.049
  • Ranjbari A, Kim J, Kim JH, Yu J, Demeestere K, Heynderickx, PM (2023) Enhancement of commercial ZnO adsorption and photocatalytic degradation capacity of methylene blue by oxygen vacancy modification: Kinetic study. Catal. Today, 413, 113976. https://doi.org/10.1016/j.cattod.2022.12.007
  • Sharma M, Singh J, Hazra S, Basu S (2019) Adsorption of heavy metal ions by mesoporous ZnO and TiO2@ ZnO monoliths: adsorption and kinetic studies. Microchem. J. 145, 105-112. https://doi.org/10.1016/j.microc.2018.10.026
  • Morales-Serrato D, Torres-Pérez J, de Jesús Ruíz-Baltazar Á, Reyes-López SY (2021) Adsorbent materials for emerging contaminant (tetracycline) removal. Int. J. Res. 9, 446-491. https://doi.org/10.29121/granthaalayah.v9.i4.2021.3847
  • Ben SK, Gupta S, Raj KK, Chandra V (2023) Adsorption of malachite green from polyaniline facilitated cobalt phosphate nanocomposite from aqueous solution. Chem. Phys. Lett. 820, 140469. https://doi.org/10.1016/j.cplett.2023.140469
  • Hojjati-Najafabadi A, Esfahani PN, Davar F, Aminabhavi TM, Vasseghian, Y (2023) Adsorptive removal of malachite green using novel GO@ ZnO-NiFe2O4-αAl2O3 nanocomposites. J. Chem. Eng. 471, 144485.https://doi.org/10.1016/j.cej.2023.144485
There are 23 citations in total.

Details

Primary Language English
Subjects Wastewater Treatment Processes
Journal Section Research Articles
Authors

Şeyda Korkmaz 0000-0002-8691-0712

Özlem Tuna 0000-0003-1641-4155

Publication Date
Submission Date October 7, 2024
Acceptance Date November 11, 2024
Published in Issue Year 2025 Volume: 5 Issue: 1

Cite

APA Korkmaz, Ş., & Tuna, Ö. (n.d.). Adsorption potential of spherical ZnO particles for sufficient antibiotic removal: isotherm, kinetic and thermodynamics. Journal of Innovative Engineering and Natural Science, 5(1), 19-28. https://doi.org/10.61112/jiens.1562818


by.png
Journal of Innovative Engineering and Natural Science by İdris Karagöz is licensed under CC BY 4.0