Research Article
BibTex RIS Cite

Properties of poly(2-ethyl aniline)/graphene oxide (PEAn/GO) nanocomposites: influence of a synthesis method and polymerization time

Year 2025, Volume: 5 Issue: 1, 386 - 398, 31.01.2025
https://doi.org/10.61112/jiens.1602161

Abstract

In this work, the in situ polymerization of 2-ethyl aniline (2-EAn) in the presence of graphene oxide (GO) as an oxidant was carried out to synthesize conductive GO–poly(2-ethyl aniline) (PEAn) nanocomposites (GO-g-PEAn). GO-assisted GO-PEAn composite (GO-g-PEAn) refers to the chemical bonding and crystallisation of PEAn with a unique structure. The three different polymerization times, 48 h, 120 h and 240 h, were applied to analyze the effect of the reaction time on the polymerization of the composites. GO-PEAn nanocomposites were also synthesized by in situ polymerization of 2-EAn with the oxidant ammonium persulfate (APS), termed APS-GO-PEAn. GO-g-PEAn nanocomposites prepared at 120 h (5-day GO-g-PEAn) were selected as the most suitable composite based on evaluation of both scanning electron imaging and electrical conductivity characterization results. The 5-day GO-g-PEAn nanocomposites were compared with APS-GO-PEAn nanocomposites using X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis. The Fourier Transform Infrared (FTIR) spectrum confirmed the polymerisation of 2-ethyl aniline in the absence of conventional oxidants such as ammonium persulfate, potassium dichromate and potassium permanganate. XRD patterns indicate the presence of a crystalline phase of PEAn, resulting in higher conductivity in GO-g-PEAn nanocomposites than in APS-GO-PEAn nanocomposites. GO-g-PEAn nanocomposites showed promising conditions for their use as an electromagnetic interference (EMI) shielding materials.

Project Number

Sivas Cumhuriyet University Scientific Research Project (CUBAP), project number M-2021-820

Thanks

I would like to thank Assoc. Prof. Dr. İsrafil KÜÇÜK who provided valuable support during the study.

References

  • Yan X, Chen J, Yang J, Xue Q, Miele P (2010) Fabrication of free-standing, electrochemically active, and biocompatible graphene oxide-polyaniline and graphene-polyaniline hybrid papers. ACS Appl Mater Interfaces 2:2521–2529. https://doi.org/10.1021/am100293r
  • Wang H, Hao Q, Yang X, Lu L, Wang X (2009) Graphene oxide doped polyaniline for supercapacitors. Electrochem. Commun 11:1158–1161. https://doi.org/10.1016/j.elecom.2009.03.036
  • Yu H, Wang T, Wen Bo, Lu M, Xu Z, Zhu C, Chen Y, Xue X, Sun C, Cao M (2012) Graphene/polyaniline nanorod arrays:synthesis and excellent electromagnetic absorption properties. J Mater Chem 22:21679-21685. https://doi.org/10.1039/C2JM34273A
  • Hsu YC, Chen G L, Lee RH (2014) Graphene oxide sheet-polyaniline nanocomposite prepared through in-situ polymerization/deposition method for counter electrode of dye-sensitized solar cell. J Polym Res 21, 440. https://doi.org/10.1007/s10965-014-0440-5
  • Hong X, Fu J, Liu Y, Li S, Wang X, Dong W, Yang S (2019) Recent progress on graphene/polyaniline composites for high-performance supercapacitors. Materials 12, 1451. https://doi.org/10.3390/ma12091451
  • Shakir MF, Khan AN, Khan R, Javed S, Tariq A, Azeem M, Riaz A, Shafqat A, Cheema HM, Akram MA, Ahmad I, Jan R (2019) EMI shielding properties of polymer blends with inclusion of graphene nano platelets. Results Phys 14, 102365. https://doi.org/10 .1016/j.rinp.2019.102365
  • Cai X, Lai L, Shen Z, Lin J (2017) Graphene and graphene-based composites as Li-ion battery electrode materials and their application in full cells. J Mater Chem A 5:15423−15446. https://doi.org/10.1039/C7TA04354F
  • Mutalib TNABTA, Tan SJ, Foo KL, Liew YM, Heah CY, Abdullah MMAB (2021) Properties of polyaniline/graphene oxide (PANI/GO) composites: effect of GO loading. Polymer Bulletin 78: 4835–4847. https://doi.org/10.1007/s00289-020-03334-w
  • Dhawan SK, Kumar D, Ram MK, Chandra S, Trivedi DC (1997) Application of conducting polyaniline as sensor material for ammonia. Sens Actuators B 40:99-103. https://doi.org/10.1016/S0925-4005(97)80247-X
  • Song E, Choi JW (2013) Conducting polyaniline nanowire and its applications in chemiresistive sensing. Nanomaterials 3:498–523. https://doi.org/10.3390/nano3030498
  • Goswami S, Maiti UN, Maiti S, Nandy S, Mitra MK, Chattopadhyay KK (2011) Preparation of graphene−polyaniline composites by simple chemical procedure and its improved field emission properties. Carbon 49:2245−2252. https://doi.org/10.1016/j.carbon.2011.01.055
  • Sebastian J, Samuel JM (2020) Recent advances in the applications of substituted polyanilines and their blends and composites. Polym Bull 77:6641−6669. https://doi.org/10.1007/s00289-019-03081-7
  • Balboa-Palomino A, Páramo-García U, Melo-Banda JA, Verde-Gómez JY, Gallardo-Rivas NV (2024) Effect of Graphene Oxide addition on the properties of electrochemically synthesized polyaniline–graphene oxide films. Polymers 16(12):1677. https://doi.org/10.3390/polym16121677
  • Bissessur R, White W (2006) Novel alkyl substituted polyanilines/molybdenum disulfide nanocomposites. Mater Chem Phys 99:214–219. https://doi.org/10.1016/j.matchemphys.2005.10.012
  • Thanokiang J, Sakunpongpitiporn P, Direksilp C, Choeichom P, Phasuksom K, Paradee N, Sirivat A (2019) Synthesis and characterization of conducting poly(2-ethylaniline) nanoparticle: Effect of surfactant template on morphology and electrical conductivity. Synth Met 256. https://doi.org/10.1016/j.synthmet.2019.116142
  • Luo J, Jiang S, Wu Y, Chen M, Liu XJ (2012) Synthesis of stable aqueous dispersion of graphene/polyaniline composite mediated by polystyrene sulfonic acid. Polym Sci Part A:Polym Chem 50:4888−4894. https://doi.org/10.1002/pola.26316
  • Gao Z, Wang F, Chang J, Wu D, Wang X, Wang X, Xu F, Gao S, Jiang K (2014) Chemically grafted graphene-polyaniline composite for application in supercapacitor. Electrochim Acta 133:325–334. https://doi.org/10.1016/j.electacta.2014.04.033
  • Elnaggar EM, Kabel KI, Farag AA, Al-Gamal AG (2017) Comparative study on doping of polyaniline with graphene and multi-walled carbon nanotubes. J Nanostructure Chem 7:75−83. https://doi.org/10.1007/s40097-017-0217-6
  • Wei H, Zhu J, Wu S, Wei S, Guo Z (2013) Electrochromic polyaniline/graphite oxide nanocomposites with endured electrochemical energy storage. Polymer 54:1820–1831. https://doi.org/10.1016/j.polymer.2013.01.051
  • Li J, Zeng X, Ren T, Van der Heide E (2014) The preparation of graphene oxide and its derivatives and their application in bio-tribological systems. Lubricants 2:137–161. https://doi.org/10.3390/lubricants2030137
  • Raji M, Zari N, Abou el Kacem Qaiss RB (2019) Chemical preparation and functionalization techniques of graphene and graphene Oxide, in functionalized graphene nanocomposites and their derivatives, Elsevier, Amsterdam, ss 1–20.
  • Nguyen VH, Tang L, Shim J-J (2013) Electrochemical property of graphene oxide/polyaniline composite prepared by in situ interfacial polymerization. Colloid Polym Sci 291:2237–2243. https://doi.org/10.1007/s00396-013-2940-y
  • Jiang X, Lou S, Chen D et al (2015) Fabrication of polyaniline/graphene oxide composite for graphite felt electrode modification and its performance in the bioelectrochemical system. J Electroanal Chem 744:95–100. https://doi.org/10.1016/j.jelechem.2015.03.001
  • Moon Y-E, Yun J, Kim H-I (2013) Synergetic improvement in electromagnetic interference shielding characteristics of polyaniline-coated graphite oxide/γ-Fe2O3/BaTiO3 nanocomposites. J Ind Eng Chem 19:493–497. https://doi.org/10.1016/j.jiec.2012.09.002
  • Zheng J, Ma X, He X et al (2012) Preparation, characterizations, and its potential applications of PANI/graphene oxide nanocomposite. Procedia Eng 27:1478–1487. https://doi.org/10.1016/j.proeng.2011.12.611
  • Mohamadzadeh Moghadam MH, Sabury S, Gudarzi MM, Sharif F (2014) Graphene oxide‐induced polymerization and crystallization to produce highly conductive polyaniline/graphene oxide composite. J Polym Sci Part A Polym Chem 52:1545–1554. https://doi.org/10.1002/pola.27147
  • Zhao Y, Tang G-S, Yu Z-Z, Qi J-S (2012) The effect of graphite oxide on the thermoelectric properties of polyaniline. Carbon 50:3064–3073. https://doi.org/10.1016/j.carbon.2012.03.001
  • Hummers WS, Offeman RE (1958) Preparation of Graphitic Oxide. J Am Chem Soc 80(6), 1339. https://doi.org/10.1021/ja01539a017
  • Zhao X, Gnanaseelan M, Jehnichen D, Simon F, Pionteck J (2019) Green and facile synthesis of polyaniline/tannic acid/rGO composites for supercapacitor purpose. J Mater Sci 54:10809−10824. https://doi.org/10.1007/s10853-019-03654-x
  • Jun YS, Um JG, Jiang G, Yu A (2018) A Study on the effects of graphene nano-platelets (GnPs) sheet sizes from a few to hundred microns on the thermal, mechanical, and electrical properties of polypropylene (PP)/GnPs composites. Express Polym Lett 12:885–897. https://doi.org/10.3144/expresspolymlett.2018.76
  • Anaklı D, Erşan M (2024) Optimization of reduced graphene oxide yield using response surface methodology. Diamond Relat Mater 148. https://doi.org/10.1016/j.diamond.2024.111524
  • Mohammed LA, Majeed AH, Hammoodi OG, Prakash C, Alheety MA, Buddhi D, Dadoosh SA, Mohammed IK (2023) Design and characterization of novel ternary nanocomposite (rGO-MnO2-PoPDA) product and screening its dielectric properties. Int J Interact Des Manuf 17:2387–2401. https://doi.org/10.1007/s12008-022-01020-x
  • Aksoy C, Anakli D (2019) Synthesis of Graphene Oxide Through Ultrasonic Assisted Electrochemical Exfoliation. Open Chemistry 17:581–586. https://doi.org/10.1515/chem-2019-0062
  • Anaklı D, Çetinkaya S (2010) Preparation of poly(2-ethyl aniline)/kaolinite composite materials and investigation of their properties. Curr Appl Phys 10:401−406. https://doi.org/10.1016/j.cap.2009.06.037
  • Anaklı D (2024) Influence of graphene concentration on the properties of the composite prepared with poly(2-ethyl aniline) by mechanochemical method. Int J Mater Res 115:208–220. https://doi.org/10.1515/ijmr-2023-0098
  • Blinova NV, Stejskal J, Trchová M, Prokeš J, Omastová M (2007) Polyaniline and polypyrrole: A comparative study of the preparation. Eur Polym J 43:2331–2341. https://doi.org/10.1016/j.eurpolymj.2007.03.045
  • Lamichhane P, Dhakal D, Jayalath IN, Baxter L, Chaudhari S, Vaidyanathan R (2022) Polyaniline and graphene nanocomposites for enhancing the interlaminar fracture toughness and thermomechanical properties of carbon fiber/epoxy composites. arXiv preprint arXiv:2207.09500. https://doi.org/10.48550/arXiv.2207.09500
  • Hidayah NMS, Liu WW, Lai CW, Noriman NZ, Khe CS, Hashim U, Lee HC (2017) Comparison on graphite, graphene oxide and reduced graphene oxide: Synthesis and characterization. AIP Conference Proceedings 1892. https://doi.org/10.1063/1.5005764
  • Sudesh Kumar N, Das S, Bernhard C, Varma GD (2013) Effect of graphene oxide doping on superconducting properties of bulk MgB2. Supercond Sci Technol 26(9). https://doi.org/10.1088/0953-2048/26/9/095008
  • Rajagopalan B, Hur SH, Chung JS (2015) Surfactant-treated graphene covered polyaniline nanowires for supercapacitor electrode. Nanoscale Res Lett 10:183. https://doi.org/10.1186/s11671-015-0888-1
  • Mahla DK, Rahaman M, Khastgir D (2015) Composition-dependent electrical and dielectric properties of Polyaniline/Graphene composites produced by in situ polymerization technique. Polym Compos 36:445–453. https://doi.org/10.1002/pc.22959
  • Jaafar E, Kashif M, Sahari SK, Ngaini Z (2018) Study on morphological, optical and electrical properties of graphene oxide (GO) and reduced graphene oxide (rGO). Materials Science Forum 917:112-116. https://doi.org/10.4028/www.scientific.net/msf.917.112

Poli(2-etil anilin)/grafen oksit (PEAn/GO) nanokompozitlerinin özellikleri: sentez yöntemi ve polimerizasyon süresinin etkisi

Year 2025, Volume: 5 Issue: 1, 386 - 398, 31.01.2025
https://doi.org/10.61112/jiens.1602161

Abstract

Bu çalışmada, iletken grafen oksit (GO)-poli(2-etil anilin) ​​(PEAn) nanokompozit (GO-g-PEAn) sentezi, GO'nun oksidant olarak varlığında 2-etil anilin (2-EAn)'in yerinde polimerizasyonuyla gerçekleştirilmiştir. Kompozitlerin polimerizasyonu üzerinde reaksiyon süresinin etkisini analiz etmek için 48 saat, 120 saat ve 240 saat olmak üzere üç farklı polimerizasyon süresi uygulanmıştır. GO-PEAn nanokompozitleri ayrıca 2-EAn'in oksidant amonyum persülfat (APS) ile yerinde polimerizasyonuyla APS-GO-PEAn olarak adlandırılan nanokompozitleri şeklinde sentezlenmiştir. 120 saatte hazırlanan GO-g-PEAn nanokompozitleri (5 günlük GO-g-PEAn), hem SEM analizine hem de elektriksel iletkenlik verilerine dayanarak en uygun kompozit olarak seçilmiştir. 5 günlük GO-g-PEAn nanokompozitleri, X-ışını kırınımı (XRD) ve taramalı elektron mikroskobu (SEM) analizi kullanılarak APS-GO-PEAn nanokompozitleriyle karşılaştırılmıştır. Fourier Dönüşümlü Kızılötesi (FTIR) spektrumu, geleneksel oksidanların yokluğunda 2-etil anilinin polimerizasyon yaptığını doğrulamıştır. XRD desenleri, PEAn'ın kristalin bir fazının varlığını göstermektedir ve bu da GO-g-PEAn nanokompozitlerinde APS-GO-PEAn nanokompozitlerinden daha yüksek iletkenlikle sonuçlanmıştır. GO-g-PEAn nanokompozitleri, elektromanyetik girişim (EMI) kalkanlama malzemeleri olarak kullanımları için ümit verici koşullar göstermiştir.

Project Number

Sivas Cumhuriyet University Scientific Research Project (CUBAP), project number M-2021-820

References

  • Yan X, Chen J, Yang J, Xue Q, Miele P (2010) Fabrication of free-standing, electrochemically active, and biocompatible graphene oxide-polyaniline and graphene-polyaniline hybrid papers. ACS Appl Mater Interfaces 2:2521–2529. https://doi.org/10.1021/am100293r
  • Wang H, Hao Q, Yang X, Lu L, Wang X (2009) Graphene oxide doped polyaniline for supercapacitors. Electrochem. Commun 11:1158–1161. https://doi.org/10.1016/j.elecom.2009.03.036
  • Yu H, Wang T, Wen Bo, Lu M, Xu Z, Zhu C, Chen Y, Xue X, Sun C, Cao M (2012) Graphene/polyaniline nanorod arrays:synthesis and excellent electromagnetic absorption properties. J Mater Chem 22:21679-21685. https://doi.org/10.1039/C2JM34273A
  • Hsu YC, Chen G L, Lee RH (2014) Graphene oxide sheet-polyaniline nanocomposite prepared through in-situ polymerization/deposition method for counter electrode of dye-sensitized solar cell. J Polym Res 21, 440. https://doi.org/10.1007/s10965-014-0440-5
  • Hong X, Fu J, Liu Y, Li S, Wang X, Dong W, Yang S (2019) Recent progress on graphene/polyaniline composites for high-performance supercapacitors. Materials 12, 1451. https://doi.org/10.3390/ma12091451
  • Shakir MF, Khan AN, Khan R, Javed S, Tariq A, Azeem M, Riaz A, Shafqat A, Cheema HM, Akram MA, Ahmad I, Jan R (2019) EMI shielding properties of polymer blends with inclusion of graphene nano platelets. Results Phys 14, 102365. https://doi.org/10 .1016/j.rinp.2019.102365
  • Cai X, Lai L, Shen Z, Lin J (2017) Graphene and graphene-based composites as Li-ion battery electrode materials and their application in full cells. J Mater Chem A 5:15423−15446. https://doi.org/10.1039/C7TA04354F
  • Mutalib TNABTA, Tan SJ, Foo KL, Liew YM, Heah CY, Abdullah MMAB (2021) Properties of polyaniline/graphene oxide (PANI/GO) composites: effect of GO loading. Polymer Bulletin 78: 4835–4847. https://doi.org/10.1007/s00289-020-03334-w
  • Dhawan SK, Kumar D, Ram MK, Chandra S, Trivedi DC (1997) Application of conducting polyaniline as sensor material for ammonia. Sens Actuators B 40:99-103. https://doi.org/10.1016/S0925-4005(97)80247-X
  • Song E, Choi JW (2013) Conducting polyaniline nanowire and its applications in chemiresistive sensing. Nanomaterials 3:498–523. https://doi.org/10.3390/nano3030498
  • Goswami S, Maiti UN, Maiti S, Nandy S, Mitra MK, Chattopadhyay KK (2011) Preparation of graphene−polyaniline composites by simple chemical procedure and its improved field emission properties. Carbon 49:2245−2252. https://doi.org/10.1016/j.carbon.2011.01.055
  • Sebastian J, Samuel JM (2020) Recent advances in the applications of substituted polyanilines and their blends and composites. Polym Bull 77:6641−6669. https://doi.org/10.1007/s00289-019-03081-7
  • Balboa-Palomino A, Páramo-García U, Melo-Banda JA, Verde-Gómez JY, Gallardo-Rivas NV (2024) Effect of Graphene Oxide addition on the properties of electrochemically synthesized polyaniline–graphene oxide films. Polymers 16(12):1677. https://doi.org/10.3390/polym16121677
  • Bissessur R, White W (2006) Novel alkyl substituted polyanilines/molybdenum disulfide nanocomposites. Mater Chem Phys 99:214–219. https://doi.org/10.1016/j.matchemphys.2005.10.012
  • Thanokiang J, Sakunpongpitiporn P, Direksilp C, Choeichom P, Phasuksom K, Paradee N, Sirivat A (2019) Synthesis and characterization of conducting poly(2-ethylaniline) nanoparticle: Effect of surfactant template on morphology and electrical conductivity. Synth Met 256. https://doi.org/10.1016/j.synthmet.2019.116142
  • Luo J, Jiang S, Wu Y, Chen M, Liu XJ (2012) Synthesis of stable aqueous dispersion of graphene/polyaniline composite mediated by polystyrene sulfonic acid. Polym Sci Part A:Polym Chem 50:4888−4894. https://doi.org/10.1002/pola.26316
  • Gao Z, Wang F, Chang J, Wu D, Wang X, Wang X, Xu F, Gao S, Jiang K (2014) Chemically grafted graphene-polyaniline composite for application in supercapacitor. Electrochim Acta 133:325–334. https://doi.org/10.1016/j.electacta.2014.04.033
  • Elnaggar EM, Kabel KI, Farag AA, Al-Gamal AG (2017) Comparative study on doping of polyaniline with graphene and multi-walled carbon nanotubes. J Nanostructure Chem 7:75−83. https://doi.org/10.1007/s40097-017-0217-6
  • Wei H, Zhu J, Wu S, Wei S, Guo Z (2013) Electrochromic polyaniline/graphite oxide nanocomposites with endured electrochemical energy storage. Polymer 54:1820–1831. https://doi.org/10.1016/j.polymer.2013.01.051
  • Li J, Zeng X, Ren T, Van der Heide E (2014) The preparation of graphene oxide and its derivatives and their application in bio-tribological systems. Lubricants 2:137–161. https://doi.org/10.3390/lubricants2030137
  • Raji M, Zari N, Abou el Kacem Qaiss RB (2019) Chemical preparation and functionalization techniques of graphene and graphene Oxide, in functionalized graphene nanocomposites and their derivatives, Elsevier, Amsterdam, ss 1–20.
  • Nguyen VH, Tang L, Shim J-J (2013) Electrochemical property of graphene oxide/polyaniline composite prepared by in situ interfacial polymerization. Colloid Polym Sci 291:2237–2243. https://doi.org/10.1007/s00396-013-2940-y
  • Jiang X, Lou S, Chen D et al (2015) Fabrication of polyaniline/graphene oxide composite for graphite felt electrode modification and its performance in the bioelectrochemical system. J Electroanal Chem 744:95–100. https://doi.org/10.1016/j.jelechem.2015.03.001
  • Moon Y-E, Yun J, Kim H-I (2013) Synergetic improvement in electromagnetic interference shielding characteristics of polyaniline-coated graphite oxide/γ-Fe2O3/BaTiO3 nanocomposites. J Ind Eng Chem 19:493–497. https://doi.org/10.1016/j.jiec.2012.09.002
  • Zheng J, Ma X, He X et al (2012) Preparation, characterizations, and its potential applications of PANI/graphene oxide nanocomposite. Procedia Eng 27:1478–1487. https://doi.org/10.1016/j.proeng.2011.12.611
  • Mohamadzadeh Moghadam MH, Sabury S, Gudarzi MM, Sharif F (2014) Graphene oxide‐induced polymerization and crystallization to produce highly conductive polyaniline/graphene oxide composite. J Polym Sci Part A Polym Chem 52:1545–1554. https://doi.org/10.1002/pola.27147
  • Zhao Y, Tang G-S, Yu Z-Z, Qi J-S (2012) The effect of graphite oxide on the thermoelectric properties of polyaniline. Carbon 50:3064–3073. https://doi.org/10.1016/j.carbon.2012.03.001
  • Hummers WS, Offeman RE (1958) Preparation of Graphitic Oxide. J Am Chem Soc 80(6), 1339. https://doi.org/10.1021/ja01539a017
  • Zhao X, Gnanaseelan M, Jehnichen D, Simon F, Pionteck J (2019) Green and facile synthesis of polyaniline/tannic acid/rGO composites for supercapacitor purpose. J Mater Sci 54:10809−10824. https://doi.org/10.1007/s10853-019-03654-x
  • Jun YS, Um JG, Jiang G, Yu A (2018) A Study on the effects of graphene nano-platelets (GnPs) sheet sizes from a few to hundred microns on the thermal, mechanical, and electrical properties of polypropylene (PP)/GnPs composites. Express Polym Lett 12:885–897. https://doi.org/10.3144/expresspolymlett.2018.76
  • Anaklı D, Erşan M (2024) Optimization of reduced graphene oxide yield using response surface methodology. Diamond Relat Mater 148. https://doi.org/10.1016/j.diamond.2024.111524
  • Mohammed LA, Majeed AH, Hammoodi OG, Prakash C, Alheety MA, Buddhi D, Dadoosh SA, Mohammed IK (2023) Design and characterization of novel ternary nanocomposite (rGO-MnO2-PoPDA) product and screening its dielectric properties. Int J Interact Des Manuf 17:2387–2401. https://doi.org/10.1007/s12008-022-01020-x
  • Aksoy C, Anakli D (2019) Synthesis of Graphene Oxide Through Ultrasonic Assisted Electrochemical Exfoliation. Open Chemistry 17:581–586. https://doi.org/10.1515/chem-2019-0062
  • Anaklı D, Çetinkaya S (2010) Preparation of poly(2-ethyl aniline)/kaolinite composite materials and investigation of their properties. Curr Appl Phys 10:401−406. https://doi.org/10.1016/j.cap.2009.06.037
  • Anaklı D (2024) Influence of graphene concentration on the properties of the composite prepared with poly(2-ethyl aniline) by mechanochemical method. Int J Mater Res 115:208–220. https://doi.org/10.1515/ijmr-2023-0098
  • Blinova NV, Stejskal J, Trchová M, Prokeš J, Omastová M (2007) Polyaniline and polypyrrole: A comparative study of the preparation. Eur Polym J 43:2331–2341. https://doi.org/10.1016/j.eurpolymj.2007.03.045
  • Lamichhane P, Dhakal D, Jayalath IN, Baxter L, Chaudhari S, Vaidyanathan R (2022) Polyaniline and graphene nanocomposites for enhancing the interlaminar fracture toughness and thermomechanical properties of carbon fiber/epoxy composites. arXiv preprint arXiv:2207.09500. https://doi.org/10.48550/arXiv.2207.09500
  • Hidayah NMS, Liu WW, Lai CW, Noriman NZ, Khe CS, Hashim U, Lee HC (2017) Comparison on graphite, graphene oxide and reduced graphene oxide: Synthesis and characterization. AIP Conference Proceedings 1892. https://doi.org/10.1063/1.5005764
  • Sudesh Kumar N, Das S, Bernhard C, Varma GD (2013) Effect of graphene oxide doping on superconducting properties of bulk MgB2. Supercond Sci Technol 26(9). https://doi.org/10.1088/0953-2048/26/9/095008
  • Rajagopalan B, Hur SH, Chung JS (2015) Surfactant-treated graphene covered polyaniline nanowires for supercapacitor electrode. Nanoscale Res Lett 10:183. https://doi.org/10.1186/s11671-015-0888-1
  • Mahla DK, Rahaman M, Khastgir D (2015) Composition-dependent electrical and dielectric properties of Polyaniline/Graphene composites produced by in situ polymerization technique. Polym Compos 36:445–453. https://doi.org/10.1002/pc.22959
  • Jaafar E, Kashif M, Sahari SK, Ngaini Z (2018) Study on morphological, optical and electrical properties of graphene oxide (GO) and reduced graphene oxide (rGO). Materials Science Forum 917:112-116. https://doi.org/10.4028/www.scientific.net/msf.917.112
There are 42 citations in total.

Details

Primary Language English
Subjects Materials Science and Technologies, Polymer Science and Technologies
Journal Section Research Articles
Authors

Duygu Anaklı 0000-0002-6788-3480

Project Number Sivas Cumhuriyet University Scientific Research Project (CUBAP), project number M-2021-820
Publication Date January 31, 2025
Submission Date December 17, 2024
Acceptance Date January 26, 2025
Published in Issue Year 2025 Volume: 5 Issue: 1

Cite

APA Anaklı, D. (2025). Properties of poly(2-ethyl aniline)/graphene oxide (PEAn/GO) nanocomposites: influence of a synthesis method and polymerization time. Journal of Innovative Engineering and Natural Science, 5(1), 386-398. https://doi.org/10.61112/jiens.1602161


by.png
Journal of Innovative Engineering and Natural Science by İdris Karagöz is licensed under CC BY 4.0