Synthesis, characterization and in vitro application of rare earth element-doped MoO₃ nanomaterial for photodynamic therapy in prostate cancer
Year 2025,
Volume: 5 Issue: 2, 622 - 634, 31.07.2025
Haşim Özgür Tabakoğlu
Abstract
Photodynamic therapy (PDT) has been gaining increasing importance as an alternative approach in prostate cancer treatment. The optimization of photosensitizers and the development of targeted delivery systems are key research areas aimed at enhancing the efficacy of PDT. Recent studies have demonstrated that integrating PDT with nanotechnology enables the selective targeting of cancer cells while minimizing damage to healthy tissues. Molybdenum trioxide (MoO₃) has attracted attention in biomedical applications due to its chemical stability and light-sensitive properties. Its various polymorphic structures exhibit high sensitivity to photochemical interactions, making it a promising candidate for use as both a photosensitizer and a photothermal agent. When doped with rare earth elements, MoO₃ has been shown to exhibit altered optoelectronic properties and enhanced photodynamic/photothermal activity. This study investigates the photodynamic effects of MoO₃ nanoparticles doped with rare earth elements (Nd, Yb) on prostate cancer cells (PC3). The synthesized nanoparticles will be exposed to laser irradiation at specific wavelengths to evaluate their ability to generate reactive oxygen species (ROS) and induce apoptotic processes. The findings of this study aim to demonstrate the potential of rare-earth-doped MoO₃ as an innovative photosensitizer for cancer therapy.
Project Number
BBAP.2022.013
References
-
Gheewala T, Skwor T, Munirathinam G (2017) Photosensitizers in prostate cancer therapy. Oncotarget 8:30524–30538. https://doi.org/10.18632/oncotarget.15496
-
Azzouzi AR, Barret E, Bennet J, et al (2015) TOOKAD® Soluble focal therapy: pooled analysis of three phase II studies assessing the minimally invasive ablation of localized prostate cancer. World Journal of Urology 33:945. https://doi.org/10.1007/s00345-015-1505-8
-
Azzouzi A-R, Lebdai S, Benzaghou F, Stief C (2015) Vascular-targeted photodynamic therapy with TOOKAD® Soluble in localized prostate cancer: standardization of the procedure. World J Urol 33:937–944. https://doi.org/10.1007/s00345-015-1535-2
-
Patel H, Mick R, Finlay J, et al (2008) Motexafin Lutetium-Photodynamic Therapy of Prostate Cancer: Short- and Long-Term Effects on Prostate-Specific Antigen. Clin Cancer Res 14:4869–4876. https://doi.org/10.1158/1078-0432.CCR-08-0317
-
Calixto GMF, Bernegossi J, De Freitas LM, et al (2016) Nanotechnology-based drug delivery systems for photodynamic therapy of cancer: a review. Molecules 21(3):342-360. https://doi.org/10.3390/molecules21030342.
-
Jankun J (2011) Protein-based nanotechnology: Antibody conjugated with photosensitizer in targeted anticancer photoimmunotherapy. International Journal of Oncology 39:949–953. https://doi.org/10.3892/ijo.2011.1110
-
Deng Y, Zhang Q, Liu G, et al (2022) Self-Assembled PSMA-Targeted Nanoparticles Enhanced Photodynamic Therapy in Prostate Cancer. Journal of Nanomaterials 2022:8726662. https://doi.org/10.1155/2022/8726662
-
Liu T, Wu LY, Berkman CE (2010) Prostate-specific membrane antigen-targeted photodynamic therapy induces rapid cytoskeletal disruption. Cancer Letters 296:106–112. https://doi.org/10.1016/j.canlet.2010.04.003
-
Xue Q, Zhang J, Jiao J, et al (2022) Photodynamic therapy for prostate cancer: Recent advances, challenges and opportunities. Frontiers in Oncology 12:980239. https://doi.org/10.3389/fonc.2022.980239
-
Wang Z, Madhavi S, Lou XW (David) (2012) Ultralong α-MoO3 Nanobelts: Synthesis and Effect of Binder Choice on Their Lithium Storage Properties. J Phys Chem C 116:12508–12513. https://doi.org/10.1021/jp304216z
-
Hanlon D, Backes C, Higgins TM, et al (2014) Production of Molybdenum Trioxide Nanosheets by Liquid Exfoliation and Their Application in High-Performance Supercapacitors. Chem Mater 26:1751–1763. https://doi.org/10.1021/cm500271u
-
Chen J, Yang H, Chang L, et al (2007) Sonochemical preparation and characterization of photochromic MoO3 nanoparticles. Front Phys China 2:92–95. https://doi.org/10.1007/s11467-007-0013-8
-
Shafaei S, Dörrstein J, Guggenbichler JP, Zollfrank C (2017) Cellulose acetate‐based composites with antimicrobial properties from embedded molybdenum trioxide particles. Letters in Applied Microbiology 64:43–50. https://doi.org/10.1111/lam.12670
-
Zhang Y, Li D, Tan J, et al (2021) Near-Infrared Regulated Nanozymatic/Photothermal/Photodynamic Triple-Therapy for Combating Multidrug-Resistant Bacterial Infections via Oxygen-Vacancy Molybdenum Trioxide Nanodots. Small 17:2005739. https://doi.org/10.1002/smll.202005739
-
Song G, Hao J, Liang C, et al (2016) Degradable Molybdenum Oxide Nanosheets with Rapid Clearance and Efficient Tumor Homing Capabilities as a Therapeutic Nanoplatform. Angewandte Chemie International Edition 55:2122–2126. https://doi.org/10.1002/anie.201510597
-
Wu D, Lin T, Bai L, et al (2017) Enhanced phototoxicity of photodynamic treatment by Cx26‐composed GJIC via ROS‐, calcium‐ and lipid peroxide‐mediated pathways. Journal of Biophotonics 10:1586–1596. https://doi.org/10.1002/jbio.201600255
-
Overchuk M, Weersink RA, Wilson BC, Zheng G (2023) Photodynamic and Photothermal Therapies: Synergy Opportunities for Nanomedicine. ACS Nano 17:7979–8003. https://doi.org/10.1021/acsnano.3c00891
-
Du LZ, Feng Q, Zheng HJ (2011) Sol-Gel Combustion Synthesis of Nanocrystalline Cerium (IV) Oxide Powders. Advanced Materials Research 295–297:170–174. https://doi.org/10.4028/www.scientific.net/AMR.295-297.170
-
Varma A, Mukasyan AS, Rogachev AS, Manukyan KV (2016) Solution Combustion Synthesis of Nanoscale Materials. Chem Rev 116:14493–14586. https://doi.org/10.1021/acs.chemrev.6b00279
-
Abrantes M, Amarante TR, Antunes MM, et al (2010) Synthesis, Structure, and Catalytic Performance in Cyclooctene Epoxidation of a Molybdenum Oxide/Bipyridine Hybrid Material: {[MoO3(bipy)][MoO3(H2O)]}n. Inorg Chem 49:6865–6873. https://doi.org/10.1021/ic100479a
-
Souadi G, Madkhli AY, Kaynar UH, et al (2025) Photoluminescence properties and structural analysis of Tb3+-doped K₃Gd(BO₂)₆: A first study on negative thermal quenching. Journal of Alloys and Compounds 1010:178147. https://doi.org/10.1016/j.jallcom.2024.178147
-
Jung HS, Verwilst P, Sharma A, et al (2018) Organic molecule-based photothermal agents: an expanding photothermal therapy universe. Chem Soc Rev 47:2280–2297. https://doi.org/10.1039/C7CS00522A
-
Zhou J, Xu N-S, Deng S-Z, et al (2003) Large-Area Nanowire Arrays of Molybdenum and Molybdenum Oxides: Synthesis and Field Emission Properties. Advanced Materials 15:1835–1840. https://doi.org/10.1002/adma.200305528
-
Lithiated MoO3 Nanobelts with Greatly Improved Performance for Lithium Batteries - Mai - 2007 - Advanced Materials - Wiley Online Library. https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.200700883. Accessed 16 Feb 2025
-
One-Step Synthesis of Submicrometer Fibers of MoO3|Chemistry of Materials. https://pubs.acs.org/doi/10.1021/cm031057y. Accessed 16 Feb 2025
-
Liu H, Lv C, Ding B, et al (2014) Antitumor activity of G-quadruplex-interactive agent TMPyP4 with photodynamic therapy in ovarian carcinoma cells. Oncology letters 8:409–413.
-
Karakus SH, Basarir B, Pinarci EY, et al (2013) Long-term results of half-dose photodynamic therapy for chronic central serous chorioretinopathy with contrast sensitivity changes. Eye 27:612–620.
-
Mohammadi Z, Sazgarnia A, Rajabi O, et al (2013) An in vitro study on the photosensitivity of 5-aminolevulinic acid conjugated gold nanoparticles. Photodiagnosis and Photodynamic Therapy 10:382–388. https://doi.org/10.1016/j.pdpdt.2013.03.010
-
Yun Y, Shi Z, Shao J, et al (2018) Strongly Surface‐Bonded MoO2 @Carbon Nanocomposites by Nitrogen‐Doping with Outstanding Capability for Fast and Stable Li Storage. ChemNanoMat 4:1247–1253. https://doi.org/10.1002/cnma.201800302
-
Yang Y, Li M, Zhou C, et al (2021) Laser-Induced MoO x /Sulfur-Doped Graphene Hybrid Frameworks as Efficient Antibacterial Agents. Langmuir 37:1596–1604. https://doi.org/10.1021/acs.langmuir.0c03453
-
Hasan MdT, Gonzalez‐Rodriguez R, Lin C, et al (2020) Rare‐Earth Metal Ions Doped Graphene Quantum Dots for Near‐IR In Vitro/In Vivo/Ex Vivo Imaging Applications. Advanced Optical Materials 8:2000897. https://doi.org/10.1002/adom.202000897
-
Schwartz JJ, Le ST, Krylyuk S, et al (2021) Substrate-mediated hyperbolic phonon polaritons in MoO3. Nanophotonics 10:1517–1527. https://doi.org/10.1515/nanoph-2020-0640
-
Puebla S, D’Agosta R, Sanchez-Santolino G, et al (2021) In-plane anisotropic optical and mechanical properties of two-dimensional MoO3. npj 2D Mater Appl 5:1–7. https://doi.org/10.1038/s41699-021-00220-5
Prostat kanserinde fotodinamik terapi için nadir toprak elementi katkılı MoO₃ nanomalzemenin sentezi, karakterizasyonu ve in vitro uygulaması
Year 2025,
Volume: 5 Issue: 2, 622 - 634, 31.07.2025
Haşim Özgür Tabakoğlu
Abstract
Fotodinamik terapi (PDT), prostat kanseri tedavisinde geleneksel yöntemlere alternatif olarak giderek daha fazla önem kazanmaktadır. Özellikle fotoduyarlı maddelerin optimizasyonu ve hedefe yönelik taşıma sistemlerinin geliştirilmesi, PDT’nin etkinliğini artırmaya yönelik temel araştırma alanları arasında yer almaktadır. Son yıllarda yapılan çalışmalar, PDT’nin nanoteknoloji ile entegrasyonunun kanser hücrelerinin seçici olarak hedeflenmesini sağladığını ve sağlıklı dokulara zarar verme riskini minimize ettiğini göstermektedir. Molibden trioksit (MoO₃), kimyasal stabilitesi ve ışığa duyarlı özellikleri nedeniyle tıbbi uygulamalarda dikkat çeken bir materyaldir. Farklı polimorfik yapıları sayesinde fotokimyasal etkileşimlere karşı yüksek duyarlılık sergileyen MoO₃, hem fotosensitizer hem de fototermal ajan olarak kullanılabilme potansiyeline sahiptir. Nadir toprak elementleri ile katkılandığında, optoelektronik özelliklerinin değiştiği ve fotodinamik/ fototermal etkinliğinin arttığı gösterilmiştir. Bu çalışmada, nadir toprak elementleri (Nd, Yb) ile katkılanmış MoO₃ nanopartiküllerinin prostat kanseri hücre hattı (PC3) üzerindeki fotodinamik etkileri incelenecektir. Özel olarak sentezlenen bu nanopartiküller, belirli dalga boylarındaki lazer ışınlarına maruz bırakılarak reaktif oksijen türleri (ROS) üretimi ve apoptotik süreçlerin tetiklenmesi açısından değerlendirilecektir. Çalışmanın bulguları, nadir toprak elementi katkılı MoO₃’ün kanser tedavisinde yenilikçi bir fotosensitizer olarak kullanılma potansiyelini ortaya koymayı amaçlamaktadır.
Supporting Institution
İzmir Bakırçay Üniversitesi
Project Number
BBAP.2022.013
Thanks
Bu çalışma İzmir Bakırçay Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü tarafından BBAP.2022.013 nolu Bağımsız Bilimsel Araştırma Projeleri kapsamında desteklenmiştir.
References
-
Gheewala T, Skwor T, Munirathinam G (2017) Photosensitizers in prostate cancer therapy. Oncotarget 8:30524–30538. https://doi.org/10.18632/oncotarget.15496
-
Azzouzi AR, Barret E, Bennet J, et al (2015) TOOKAD® Soluble focal therapy: pooled analysis of three phase II studies assessing the minimally invasive ablation of localized prostate cancer. World Journal of Urology 33:945. https://doi.org/10.1007/s00345-015-1505-8
-
Azzouzi A-R, Lebdai S, Benzaghou F, Stief C (2015) Vascular-targeted photodynamic therapy with TOOKAD® Soluble in localized prostate cancer: standardization of the procedure. World J Urol 33:937–944. https://doi.org/10.1007/s00345-015-1535-2
-
Patel H, Mick R, Finlay J, et al (2008) Motexafin Lutetium-Photodynamic Therapy of Prostate Cancer: Short- and Long-Term Effects on Prostate-Specific Antigen. Clin Cancer Res 14:4869–4876. https://doi.org/10.1158/1078-0432.CCR-08-0317
-
Calixto GMF, Bernegossi J, De Freitas LM, et al (2016) Nanotechnology-based drug delivery systems for photodynamic therapy of cancer: a review. Molecules 21(3):342-360. https://doi.org/10.3390/molecules21030342.
-
Jankun J (2011) Protein-based nanotechnology: Antibody conjugated with photosensitizer in targeted anticancer photoimmunotherapy. International Journal of Oncology 39:949–953. https://doi.org/10.3892/ijo.2011.1110
-
Deng Y, Zhang Q, Liu G, et al (2022) Self-Assembled PSMA-Targeted Nanoparticles Enhanced Photodynamic Therapy in Prostate Cancer. Journal of Nanomaterials 2022:8726662. https://doi.org/10.1155/2022/8726662
-
Liu T, Wu LY, Berkman CE (2010) Prostate-specific membrane antigen-targeted photodynamic therapy induces rapid cytoskeletal disruption. Cancer Letters 296:106–112. https://doi.org/10.1016/j.canlet.2010.04.003
-
Xue Q, Zhang J, Jiao J, et al (2022) Photodynamic therapy for prostate cancer: Recent advances, challenges and opportunities. Frontiers in Oncology 12:980239. https://doi.org/10.3389/fonc.2022.980239
-
Wang Z, Madhavi S, Lou XW (David) (2012) Ultralong α-MoO3 Nanobelts: Synthesis and Effect of Binder Choice on Their Lithium Storage Properties. J Phys Chem C 116:12508–12513. https://doi.org/10.1021/jp304216z
-
Hanlon D, Backes C, Higgins TM, et al (2014) Production of Molybdenum Trioxide Nanosheets by Liquid Exfoliation and Their Application in High-Performance Supercapacitors. Chem Mater 26:1751–1763. https://doi.org/10.1021/cm500271u
-
Chen J, Yang H, Chang L, et al (2007) Sonochemical preparation and characterization of photochromic MoO3 nanoparticles. Front Phys China 2:92–95. https://doi.org/10.1007/s11467-007-0013-8
-
Shafaei S, Dörrstein J, Guggenbichler JP, Zollfrank C (2017) Cellulose acetate‐based composites with antimicrobial properties from embedded molybdenum trioxide particles. Letters in Applied Microbiology 64:43–50. https://doi.org/10.1111/lam.12670
-
Zhang Y, Li D, Tan J, et al (2021) Near-Infrared Regulated Nanozymatic/Photothermal/Photodynamic Triple-Therapy for Combating Multidrug-Resistant Bacterial Infections via Oxygen-Vacancy Molybdenum Trioxide Nanodots. Small 17:2005739. https://doi.org/10.1002/smll.202005739
-
Song G, Hao J, Liang C, et al (2016) Degradable Molybdenum Oxide Nanosheets with Rapid Clearance and Efficient Tumor Homing Capabilities as a Therapeutic Nanoplatform. Angewandte Chemie International Edition 55:2122–2126. https://doi.org/10.1002/anie.201510597
-
Wu D, Lin T, Bai L, et al (2017) Enhanced phototoxicity of photodynamic treatment by Cx26‐composed GJIC via ROS‐, calcium‐ and lipid peroxide‐mediated pathways. Journal of Biophotonics 10:1586–1596. https://doi.org/10.1002/jbio.201600255
-
Overchuk M, Weersink RA, Wilson BC, Zheng G (2023) Photodynamic and Photothermal Therapies: Synergy Opportunities for Nanomedicine. ACS Nano 17:7979–8003. https://doi.org/10.1021/acsnano.3c00891
-
Du LZ, Feng Q, Zheng HJ (2011) Sol-Gel Combustion Synthesis of Nanocrystalline Cerium (IV) Oxide Powders. Advanced Materials Research 295–297:170–174. https://doi.org/10.4028/www.scientific.net/AMR.295-297.170
-
Varma A, Mukasyan AS, Rogachev AS, Manukyan KV (2016) Solution Combustion Synthesis of Nanoscale Materials. Chem Rev 116:14493–14586. https://doi.org/10.1021/acs.chemrev.6b00279
-
Abrantes M, Amarante TR, Antunes MM, et al (2010) Synthesis, Structure, and Catalytic Performance in Cyclooctene Epoxidation of a Molybdenum Oxide/Bipyridine Hybrid Material: {[MoO3(bipy)][MoO3(H2O)]}n. Inorg Chem 49:6865–6873. https://doi.org/10.1021/ic100479a
-
Souadi G, Madkhli AY, Kaynar UH, et al (2025) Photoluminescence properties and structural analysis of Tb3+-doped K₃Gd(BO₂)₆: A first study on negative thermal quenching. Journal of Alloys and Compounds 1010:178147. https://doi.org/10.1016/j.jallcom.2024.178147
-
Jung HS, Verwilst P, Sharma A, et al (2018) Organic molecule-based photothermal agents: an expanding photothermal therapy universe. Chem Soc Rev 47:2280–2297. https://doi.org/10.1039/C7CS00522A
-
Zhou J, Xu N-S, Deng S-Z, et al (2003) Large-Area Nanowire Arrays of Molybdenum and Molybdenum Oxides: Synthesis and Field Emission Properties. Advanced Materials 15:1835–1840. https://doi.org/10.1002/adma.200305528
-
Lithiated MoO3 Nanobelts with Greatly Improved Performance for Lithium Batteries - Mai - 2007 - Advanced Materials - Wiley Online Library. https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.200700883. Accessed 16 Feb 2025
-
One-Step Synthesis of Submicrometer Fibers of MoO3|Chemistry of Materials. https://pubs.acs.org/doi/10.1021/cm031057y. Accessed 16 Feb 2025
-
Liu H, Lv C, Ding B, et al (2014) Antitumor activity of G-quadruplex-interactive agent TMPyP4 with photodynamic therapy in ovarian carcinoma cells. Oncology letters 8:409–413.
-
Karakus SH, Basarir B, Pinarci EY, et al (2013) Long-term results of half-dose photodynamic therapy for chronic central serous chorioretinopathy with contrast sensitivity changes. Eye 27:612–620.
-
Mohammadi Z, Sazgarnia A, Rajabi O, et al (2013) An in vitro study on the photosensitivity of 5-aminolevulinic acid conjugated gold nanoparticles. Photodiagnosis and Photodynamic Therapy 10:382–388. https://doi.org/10.1016/j.pdpdt.2013.03.010
-
Yun Y, Shi Z, Shao J, et al (2018) Strongly Surface‐Bonded MoO2 @Carbon Nanocomposites by Nitrogen‐Doping with Outstanding Capability for Fast and Stable Li Storage. ChemNanoMat 4:1247–1253. https://doi.org/10.1002/cnma.201800302
-
Yang Y, Li M, Zhou C, et al (2021) Laser-Induced MoO x /Sulfur-Doped Graphene Hybrid Frameworks as Efficient Antibacterial Agents. Langmuir 37:1596–1604. https://doi.org/10.1021/acs.langmuir.0c03453
-
Hasan MdT, Gonzalez‐Rodriguez R, Lin C, et al (2020) Rare‐Earth Metal Ions Doped Graphene Quantum Dots for Near‐IR In Vitro/In Vivo/Ex Vivo Imaging Applications. Advanced Optical Materials 8:2000897. https://doi.org/10.1002/adom.202000897
-
Schwartz JJ, Le ST, Krylyuk S, et al (2021) Substrate-mediated hyperbolic phonon polaritons in MoO3. Nanophotonics 10:1517–1527. https://doi.org/10.1515/nanoph-2020-0640
-
Puebla S, D’Agosta R, Sanchez-Santolino G, et al (2021) In-plane anisotropic optical and mechanical properties of two-dimensional MoO3. npj 2D Mater Appl 5:1–7. https://doi.org/10.1038/s41699-021-00220-5