A Deep Learning Approach to Real-time Electricity Load Forecasting
Year 2023,
, 1 - 9, 30.12.2023
Alaa Harith Mohammed Al-hamid
,
Serkan Savaş
Abstract
In light of the increasing importance of accurate and real-time electrical demand forecasting, this research presents a deep learning model with the goal of dramatically improving predictive accuracy. Conventional methods of forecasting, such as linear regression, have trouble capturing the complex patterns included in data about electricity usage. Standard machine learning methods are shown to be wanting when compared to the suggested deep Long Short-Term Memory (LSTM) model. Mean Absolute Error (MAE) of 5.454 and Mean Squared Error (MSE) of 18.243 demonstrate the deep LSTM model's proficiency in tackling this problem. The linear regression, on the other hand, achieved a MAE of 47.352 and an MSE of 65.606, which is lower than the proposed model. Because of its greater predictive precision and reliability, the deep LSTM model is a viable option for accurate, real-time prediction of electricity demand.
References
- [1] S. G. Patil and M. S. Ali, “Review on Analysis of
Power Supply and Demand in Maharashtra State for
Load Forecasting Using ANN,” Int J Sci Res Sci
Technol, vol. 9, no.1, pp. 341-347, 2022, Doi:
10.32628/ijsrst229152.
- [2] B. U. Islam, M. Rasheed, and S. F. Ahmed,
“Review of Short-Term Load Forecasting for Smart
Grids Using Deep Neural Networks and
Metaheuristic Methods,” Mathematical Problems in
Engineering, vol. 2022, 4049685, 2022. Doi:
10.1155/2022/4049685.
- [3] B. Yildiz, J. I. Bilbao, and A. B. Sproul, “A
review and analysis of regression and machine
learning models on commercial building electricity
load forecasting,” Renewable and Sustainable
Energy Reviews, vol. 73, pp. 1104-1122, 2017. Doi:
10.1016/j.rser.2017.02.023.
- [4] A. Azeem, I. Ismail, S. M. Jameel, F. Romlie, K.
U. Danyaro, and S. Shukla, “Deterioration of
Electrical Load Forecasting Models in a Smart Grid
Environment,” Sensors, vol. 22, no. 12, 4363, 2022,
Doi: 10.3390/s22124363.
- [5] A. Talupula, “Demand Forecasting of Outbound
Logistics Using Machine learning,” Faculty of
Computing, Blekinge Institute of Technology,
Karlskrona, Sweden, February, 2018.
- [6] I. Zuleta-Elles, A. Bautista-Lopez, M. J. Catano-
Valderrama, L. G. Marin, G. Jimenez-Estevez, and P.
Mendoza-Araya, “Load Forecasting for Different
Prediction Horizons using ANN and ARIMA
models,” in 2021 IEEE CHILEAN Conference on
Electrical, Electronics Engineering, Information and
Communication Technologies, CHILECON 2021,
2021. Doi:
10.1109/CHILECON54041.2021.9702913.
- [7] M. L. Abdulrahman et al., “A Review on Deep
Learning with Focus on Deep Recurrent Neural
Network for Electricity Forecasting in Residential
Building,” in Procedia Computer Science, vol. 193,
pp. 141-154, 2021. Doi:
10.1016/j.procs.2021.10.014.
- [8] G. Chitalia, M. Pipattanasomporn, V. Garg, and
S. Rahman, “Robust short-term electrical load
forecasting framework for commercial buildings
using deep recurrent neural networks,” Appl Energy,
vol. 278, 115410, 2020, Doi:
10.1016/j.apenergy.2020.115410.
- [9] Y. Hong, Y. Zhou, Q. Li, W. Xu, and X. Zheng,
“A deep learning method for short-term residential
load forecasting in smart grid,” IEEE Access, vol. 8,
pp. 55785–55797, 2020, Doi:
10.1109/ACCESS.2020.2981817.
- [10] B. Dietrich, J. Walther, Y. Chen, and M.
Weigold, “A deep learning approach to electric load
forecasting of machine tools,” MM Science Journal,
vol. 2021-November, 2021, Doi:
10.17973/MMSJ.2021_11_2021146.
- [11] G. Hafeez et al., “Short term load forecasting
based on deep learning for smart grid applications,”
in Advances in Intelligent Systems and Computing,
Springer Verlag, 2019, pp. 276–288. Doi:
10.1007/978-3-319-93554-6_25.
- [12] C. P. Joy, G. Pillai, Y. Chen, and K. Mistry,
“Micro-genetic algorithm embedded multipopulation
differential evolution based neural
network for short-term load forecasting,” in 2021
56th International Universities Power Engineering
Conference: Powering Net Zero Emissions, UPEC
2021 - Proceedings, Institute of Electrical and
Electronics Engineers Inc., Aug. 2021. Doi:
10.1109/UPEC50034.2021.9548262.
- [13] X. Luo and L. O. Oyedele, “A self-adaptive deep
learning model for building electricity load
prediction with moving horizon,” Machine Learning
with Applications, vol. 7, p. 100257, Mar. 2022, Doi:
10.1016/j.mlwa.2022.100257.
- [14] F. Bayram, P. Aupke, B. S. Ahmed, A. Kassler,
A. Theocharis, and J. Forsman, “DA-LSTM: A
dynamic drift-adaptive learning framework for
interval load forecasting with LSTM networks,” Eng
Appl Artif Intell, vol. 123, Aug. 2023, Doi:
10.1016/j.engappai.2023.106480.
- [15] Ernesto Aguilar Madrid, “Short-term electricity
load forecasting (Panama).”
- [16] H. Henderi, “Comparison of Min-Max
normalization and Z-Score Normalization in the Knearest
neighbor (kNN) Algorithm to Test the
Accuracy of Types of Breast Cancer,” IJIIS:
International Journal of Informatics and Information
Systems, vol. 4, no. 1, pp. 13–20, Mar. 2021, Doi:
10.47738/ijiis.v4i1.73.
- [17] C. Xiong, H. Sun, D. Pan, and Y. Li, “A
personalized collaborative filtering recommendation
algorithm based on linear regression,” Mathematical
Modelling of Engineering Problems, vol. 6, no. 3,
2019, Doi: 10.18280/mmep.060307.
- [18] Yılmaz, Y. Doğrusal Regresyon Modeli. Teori
ve Uygulamada Makine Öğrenmesi, (21-36), Nobel
Akademik Yayıncılık, Ankara, 2022.
- [19] A. de Myttenaere, B. Golden, B. Le Grand, and
F. Rossi, “Mean Absolute Percentage Error for
regression models,” Neurocomputing, vol. 192, pp.
38-48, 2016, Doi: 10.1016/j.neucom.2015.12.114.
- [20] T. O. Hodson, T. M. Over, and S. S. Foks,
“Mean Squared Error, Deconstructed,” J Adv Model
Earth Syst, vol. 13, no. 12, e2021MS002681, 2021,
Doi: 10.1029/2021MS002681.
- [21] T. O. Hodson, “Root-mean-square error
(RMSE) or mean absolute error (MAE): when to use
them or not,” Geoscientific Model Development, vol.
15, no. 14. 2022. Doi: 10.5194/gmd-15-5481-2022.
Gerçek Zamanlı Elektrik Yük Tahmini için Bir Derin Öğrenme Yaklaşımı
Year 2023,
, 1 - 9, 30.12.2023
Alaa Harith Mohammed Al-hamid
,
Serkan Savaş
Abstract
Doğru ve gerçek zamanlı elektrik talebi tahmininin artan önemi ışığında, bu araştırma, tahmin doğruluğunu önemli ölçüde artırmak amacıyla bir derin öğrenme modeli sunmaktadır. Doğrusal regresyon gibi geleneksel tahmin yöntemleri, elektrik kullanımıyla ilgili verilerde yer alan karmaşık kalıpları yakalamakta zorlanmaktadır. Standart makine öğrenimi yöntemlerinin, önerilen derin Uzun Kısa Vadeli Bellek (Long Short-Term Memory-LSTM) modeliyle karşılaştırıldığında yetersiz kaldığı görülmüştür. Ortalama Mutlak Hata (MAE) 5.454 ve Ortalama Karesel Hata (MSE) 18.243, derin LSTM modelinin bu sorunun üstesinden gelmedeki yeterliliğini göstermektedir. Doğrusal regresyon ise 47.352 MAE değeri ve 65.606 MSE değeri ile önerilen modelden daha düşük başarı sonucu elde etmiştir. Daha yüksek tahmin hassasiyeti ve güvenilirliği nedeniyle, derin LSTM modeli elektrik talebinin doğru, gerçek zamanlı tahmini için uygun bir seçenektir.
Ethical Statement
i don't have
Supporting Institution
ÇANKIRI KARATEKIN UNIVERSITY
Thanks
I would like to thank my thesis advisor, Assoc. Prof. Dr. Serkan SAVAŞ, for his patience, guidance and understanding.
References
- [1] S. G. Patil and M. S. Ali, “Review on Analysis of
Power Supply and Demand in Maharashtra State for
Load Forecasting Using ANN,” Int J Sci Res Sci
Technol, vol. 9, no.1, pp. 341-347, 2022, Doi:
10.32628/ijsrst229152.
- [2] B. U. Islam, M. Rasheed, and S. F. Ahmed,
“Review of Short-Term Load Forecasting for Smart
Grids Using Deep Neural Networks and
Metaheuristic Methods,” Mathematical Problems in
Engineering, vol. 2022, 4049685, 2022. Doi:
10.1155/2022/4049685.
- [3] B. Yildiz, J. I. Bilbao, and A. B. Sproul, “A
review and analysis of regression and machine
learning models on commercial building electricity
load forecasting,” Renewable and Sustainable
Energy Reviews, vol. 73, pp. 1104-1122, 2017. Doi:
10.1016/j.rser.2017.02.023.
- [4] A. Azeem, I. Ismail, S. M. Jameel, F. Romlie, K.
U. Danyaro, and S. Shukla, “Deterioration of
Electrical Load Forecasting Models in a Smart Grid
Environment,” Sensors, vol. 22, no. 12, 4363, 2022,
Doi: 10.3390/s22124363.
- [5] A. Talupula, “Demand Forecasting of Outbound
Logistics Using Machine learning,” Faculty of
Computing, Blekinge Institute of Technology,
Karlskrona, Sweden, February, 2018.
- [6] I. Zuleta-Elles, A. Bautista-Lopez, M. J. Catano-
Valderrama, L. G. Marin, G. Jimenez-Estevez, and P.
Mendoza-Araya, “Load Forecasting for Different
Prediction Horizons using ANN and ARIMA
models,” in 2021 IEEE CHILEAN Conference on
Electrical, Electronics Engineering, Information and
Communication Technologies, CHILECON 2021,
2021. Doi:
10.1109/CHILECON54041.2021.9702913.
- [7] M. L. Abdulrahman et al., “A Review on Deep
Learning with Focus on Deep Recurrent Neural
Network for Electricity Forecasting in Residential
Building,” in Procedia Computer Science, vol. 193,
pp. 141-154, 2021. Doi:
10.1016/j.procs.2021.10.014.
- [8] G. Chitalia, M. Pipattanasomporn, V. Garg, and
S. Rahman, “Robust short-term electrical load
forecasting framework for commercial buildings
using deep recurrent neural networks,” Appl Energy,
vol. 278, 115410, 2020, Doi:
10.1016/j.apenergy.2020.115410.
- [9] Y. Hong, Y. Zhou, Q. Li, W. Xu, and X. Zheng,
“A deep learning method for short-term residential
load forecasting in smart grid,” IEEE Access, vol. 8,
pp. 55785–55797, 2020, Doi:
10.1109/ACCESS.2020.2981817.
- [10] B. Dietrich, J. Walther, Y. Chen, and M.
Weigold, “A deep learning approach to electric load
forecasting of machine tools,” MM Science Journal,
vol. 2021-November, 2021, Doi:
10.17973/MMSJ.2021_11_2021146.
- [11] G. Hafeez et al., “Short term load forecasting
based on deep learning for smart grid applications,”
in Advances in Intelligent Systems and Computing,
Springer Verlag, 2019, pp. 276–288. Doi:
10.1007/978-3-319-93554-6_25.
- [12] C. P. Joy, G. Pillai, Y. Chen, and K. Mistry,
“Micro-genetic algorithm embedded multipopulation
differential evolution based neural
network for short-term load forecasting,” in 2021
56th International Universities Power Engineering
Conference: Powering Net Zero Emissions, UPEC
2021 - Proceedings, Institute of Electrical and
Electronics Engineers Inc., Aug. 2021. Doi:
10.1109/UPEC50034.2021.9548262.
- [13] X. Luo and L. O. Oyedele, “A self-adaptive deep
learning model for building electricity load
prediction with moving horizon,” Machine Learning
with Applications, vol. 7, p. 100257, Mar. 2022, Doi:
10.1016/j.mlwa.2022.100257.
- [14] F. Bayram, P. Aupke, B. S. Ahmed, A. Kassler,
A. Theocharis, and J. Forsman, “DA-LSTM: A
dynamic drift-adaptive learning framework for
interval load forecasting with LSTM networks,” Eng
Appl Artif Intell, vol. 123, Aug. 2023, Doi:
10.1016/j.engappai.2023.106480.
- [15] Ernesto Aguilar Madrid, “Short-term electricity
load forecasting (Panama).”
- [16] H. Henderi, “Comparison of Min-Max
normalization and Z-Score Normalization in the Knearest
neighbor (kNN) Algorithm to Test the
Accuracy of Types of Breast Cancer,” IJIIS:
International Journal of Informatics and Information
Systems, vol. 4, no. 1, pp. 13–20, Mar. 2021, Doi:
10.47738/ijiis.v4i1.73.
- [17] C. Xiong, H. Sun, D. Pan, and Y. Li, “A
personalized collaborative filtering recommendation
algorithm based on linear regression,” Mathematical
Modelling of Engineering Problems, vol. 6, no. 3,
2019, Doi: 10.18280/mmep.060307.
- [18] Yılmaz, Y. Doğrusal Regresyon Modeli. Teori
ve Uygulamada Makine Öğrenmesi, (21-36), Nobel
Akademik Yayıncılık, Ankara, 2022.
- [19] A. de Myttenaere, B. Golden, B. Le Grand, and
F. Rossi, “Mean Absolute Percentage Error for
regression models,” Neurocomputing, vol. 192, pp.
38-48, 2016, Doi: 10.1016/j.neucom.2015.12.114.
- [20] T. O. Hodson, T. M. Over, and S. S. Foks,
“Mean Squared Error, Deconstructed,” J Adv Model
Earth Syst, vol. 13, no. 12, e2021MS002681, 2021,
Doi: 10.1029/2021MS002681.
- [21] T. O. Hodson, “Root-mean-square error
(RMSE) or mean absolute error (MAE): when to use
them or not,” Geoscientific Model Development, vol.
15, no. 14. 2022. Doi: 10.5194/gmd-15-5481-2022.