Research Article
BibTex RIS Cite

COVID-19'un Yayılım Modelini Tahmin Etmek İçin Hibrit GA-ConvLSTM Modeli: Şanghay İşbirliği Örgütü İçin Bir Vaka Çalışması

Year 2025, Volume: 7 Issue: 1, 74 - 89, 30.06.2025
https://doi.org/10.59940/jismar.1604942

Abstract

COVID-19 dünyanın hemen her yerine çok hızlı bir şekilde yayılarak birçok insanın ciddi semptomlar yaşamasına ve hayatını kaybetmesine neden olmuştur. Bu çalışmada, sağlık sistemleri üzerindeki yükü hafifletmek ve salgının dağılımını tahmin etmek için planlar yapılabilmesi amacıyla derin öğrenme yöntemleriyle COVID-19'un yayılım örüntüsünü belirlemek amaçlandı. Bu amaçla CNN ve LSTM modelleri kullanılarak geliştirilen hibrit derin öğrenme modelinin hiper parametreleri genetik algoritma ile optimize edilerek daha başarılı bir tahmin performansı elde edilmiştir. GA-ConvLSTM modeli, SCO üyesi ülkelerde salgının yayılımını belirlemek için XGBoost, SVM, CNN, MLP, LSTM ve ConvLSTM ile test edilmiştir. Çalışmada, WHO tarafından sunulan 2020/01/03 ile 2022/05/31 tarihleri arasındaki günlük COVID-19 vaka ve ölüm verileri kullanılmıştır. Deneyler, GA-ConvLSTM'nin tüm ülkeler için vaka tahmininde 0,9’un üzerinde R2 değerine sahip olduğunu göstermiştir. Deneyler, GA-ConvLSTM'nin ölüm tahmininde ülkelerin çoğunluğu için 0,9’un üzerinde R2'ye sahip olduğunu göstermiştir. Ayrıca, COVID-19'un SCO ülkeleri arasındaki yayılım örüntüsü, 5 ve 14 günlük kuluçka dönemleri kullanılarak oluşturulan akor diyagramlarıyla belirlenmiştir.

References

  • [1] E. C. Abebe, T. A., Dejenie, M. Y., Shiferaw, and T. Malik, “The newly emerged COVID-19 disease: a systemic review” Virology journal, vol. 17, no. 1, 2020.
  • [2] I. H. Elrobaa, and K. J. New, “COVID-19: pulmonary and extra pulmonary manifestations” Frontiers in public health, vol. 9, 2021.
  • [3] C. Lai, R. Yu, M. Wang,W. Xian, X. Zhao, Q. Tang, and F. Wang, “Shorter incubation period is associated with severe disease progression in patients with COVID-19” Virulence, vol. 11, no. 1, pp. 1443-1452, 2020.
  • [4] A. H. Al‐Ani, R. E. Prentice, C. A. Rentsch, D. Johnson, Z. Ardalan, N. Heerasing, and B. Christensen, “Prevention, diagnosis and management of COVID‐19 in the IBD patient” Alimentary Pharmacology & Therapeutics, vol. 52, no. 1, pp. 54-72, 2020.
  • [5] A. Ayaz, A. Arshad, H. Malik, H. Ali, E. Hussain, and B. Jamil, “Risk factors for intensive care unit admission and mortality in hospitalized COVID-19 patients” Acute and critical care, vol. 35, no. 4, 2020.
  • [6] S. Singh, G. C. Ambooken, R. Setlur, S. K. Paul, M. Kanitkar, S. S. Bhatia, and R. S. Kanwar, “Challenges faced in establishing a dedicated 250 bed COVID-19 intensive care unit in a temporary structure” Trends in Anaesthesia and Critical Care, vol. 36, pp. 9-16, 2021.
  • [7] Y. Xue, and B. M. Makengo, “Twenty years of the Shanghai Cooperation Organization: Achievements, challenges and prospects” Open Journal of Social Sciences, vol. 9, no. 10, pp. 184-200, 2021.
  • [8] I. Ahmad, “Shanghai Cooperation Organization: China, Russia, and Regionalism in Central Asia” Initiatives of Regional Integration in Asia in Comparative Perspective: Concepts, Contents and Prospects, pp. 119-135, 2018.
  • [9] S. Azizi, “China’s Belt and Road Initiative (BRI): The Role of the Shanghai Cooperation Organization (SCO) in Geopolitical Security and Economic Cooperation” Open Journal of Political Science, vol. 14, no. 1, pp. 111-129, 2024.
  • [10] F. Shahid, A. Zameer, and M. Muneeb, “Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM” Chaos, Solitons & Fractals, vol. 140, 2020.
  • [11] H. Abbasimehr, and R. Paki, “Prediction of COVID-19 confirmed cases combining deep learning methods and Bayesian optimization” Chaos, Solitons & Fractals, vol. 142, 2021.
  • [12] H. T. Rauf, M. I. U. Lali, M. A. Khan, S. Kadry, H. Alolaiyan, A. Razaq, and R. Irfan, “Time series forecasting of COVID-19 transmission in Asia Pacific countries using deep neural networks” Personal and Ubiquitous Computing, pp. 1-18, 2023.
  • [13] L. Zhou, C. Zhao, N. Liu, X. Yao, and Z. Cheng, “Improved LSTM-based deep learning model for COVID-19 prediction using optimized approach” Engineering applications of artificial intelligence, vol. 122, 2023.
  • [14] C. C. Ukwuoma, D. Cai, M. B. B. Heyat, O. Bamisile, H. Adun, Z. Al-Huda, and M. A. Al-Antari, “Deep learning framework for rapid and accurate respiratory COVID-19 prediction using chest X-ray images” Journal of King Saud University-Computer and Information Sciences, vol. 35, no. 7, 2023.
  • [15] A. Al-Rashedi, and M. A. Al-Hagery, “Deep learning algorithms for forecasting COVID-19 cases in Saudi Arabia” Applied Sciences, vol. 13, no. 3, 2023.
  • [16] S. Solayman, S. A. Aumi, C. S. Mery, M. Mubassir, and R. Khan, “Automatic COVID-19 prediction using explainable machine learning techniques” International Journal of Cognitive Computing in Engineering, vol. 4, pp. 36-46, 2023.
  • [17] M. Kim, and H. Kim, “A Dynamic Analysis Data Preprocessing Technique for Malicious Code Detection with TF-IDF and Sliding Windows” Electronics, vol. 13, no. 5, 2024.
  • [18] M. A. Muslim, and Y. Dasril, “Company bankruptcy prediction framework based on the most influential features using XGBoost and stacking ensemble learning” International Journal of Electrical and Computer Engineering (IJECE), vol. 11, no. 6, pp. 5549-5557, 2021.
  • [19] A. Asselman, M. Khaldi, and S. Aammou, “Enhancing the prediction of student performance based on the machine learning XGBoost algorithm” Interactive Learning Environments, vol. 31, no. 6, pp. 3360-3379, 2023.
  • [20] A. Rizwan, N. Iqbal, R. Ahmad, and D. H. Kim, “WR-SVM model based on the margin radius approach for solving the minimum enclosing ball problem in support vector machine classification” Applied Sciences, vol. 11, no. 10, 2021.
  • [21] M. Aslani, S. Seipel, “Efficient and decision boundary aware instance selection for support vector machines” Information Sciences, vol. 577, pp. 579-598, 2021.
  • [22] R. Sharma, M. Kim, and A. Gupta, “Motor imagery classification in brain-machine interface with machine learning algorithms: Classical approach to multi-layer perceptron model” Biomedical Signal Processing and Control, 71, 2022.
  • [23] D. D. Oliveira, M. Rampinelli, G. Z. Tozatto, R. V. Andreão, and S. M. Müller, “Forecasting vehicular traffic flow using MLP and LSTM” Neural Computing and applications, vol. 33, pp. 17245-17256, 2021.
  • [24] N. Calik, M. A. Belen, and P. Mahouti, “Deep learning base modified MLP model for precise scattering parameter prediction of capacitive feed antenna”. International journal of numerical modelling: electronic networks, devices and fields, vol. 33, no. 2, 2020.
  • [25] R. Shyam, “Convolutional neural network and its architectures” Journal of Computer Technology & Applications, vol. 12, no. 2, pp. 6-14, 2021.
  • [26] M. P. Akhter, Z. Jiangbin, I. R. Naqvi, M. Abdelmajeed, A. Mehmood, and M. T. Sadiq, “Document-level text classification using single-layer multisize filters convolutional neural network” IEEE Access, vol. 8, pp. 42689-42707, 2020.
  • [27] H. V. Dudukcu, M. Taskiran, Z. G. C. Taskiran, and T. Yildirim, “Temporal Convolutional Networks with RNN approach for chaotic time series prediction” Applied soft computing, vol. 133, 2023.
  • [28] K. Hermann, and A. Lampinen, “What shapes feature representations? exploring datasets, architectures, and training” Advances in Neural Information Processing Systems, vol. 33, pp. 9995-10006, 2020.
  • [29] S. Patil, V. M. Mudaliar, P. Kamat, and S. Gite, “LSTM based Ensemble Network to enhance the learning of long-term dependencies in chatbot” International Journal for Simulation and Multidisciplinary Design Optimization, vol. 11, no. 25, 2020.
  • [30] J. Duan, P. F. Zhang, R. Qiu, and Z. Huang, “Long short-term enhanced memory for sequential recommendation” World Wide Web, vol. 26, no. 2, pp. 561-583, 2023.
  • [31] K. E. ArunKumar, D. V. Kalaga, C. M. S. Kumar, M. Kawaji, and T. M. Brenza, “Forecasting of COVID-19 using deep layer recurrent neural networks (RNNs) with gated recurrent units (GRUs) and long short-term memory (LSTM) cells” Chaos, Solitons & Fractals, vol. 146, 2021.

Hybrid GA-ConvLSTM Model for Predicting the Transmission Pattern of COVID-19: A Case Study for Shanghai Cooperation Organisation

Year 2025, Volume: 7 Issue: 1, 74 - 89, 30.06.2025
https://doi.org/10.59940/jismar.1604942

Abstract

COVID-19 has spread very quickly to almost every part of the world, causing many people to experience severe symptoms and lose their lives. In this study, it is aimed to determine the transmission pattern of COVID-19 with deep learning methods so that plans can be made to alleviate the burden on healthcare systems and predict the distribution of the epidemic. For this purpose, the hyper-parameters of the hybrid deep learning model developed using CNN and LSTM models were optimized with genetic algorithm, and a more successful prediction performance was achieved. The GA-ConvLSTM model was tested with XGBoost, SVM, CNN, MLP, LSTM, and ConvLSTM to determine the spread of the epidemic in the member countries of SCO. The study used daily COVID-19 case and death data between 2020/01/03 and 2022/05/31 presented by WHO. Experiments showed that GA-ConvLSTM has over 0.9 R2 in case prediction for all countries. Experiments showed that GA-ConvLSTM has above 0.9 R2 for the majority of countries when it comes to death prediction. In addition, the transmission pattern of COVID-19 among the SCO countries was determined with the chord diagrams created using 5 and 14 days’ incubation periods.

References

  • [1] E. C. Abebe, T. A., Dejenie, M. Y., Shiferaw, and T. Malik, “The newly emerged COVID-19 disease: a systemic review” Virology journal, vol. 17, no. 1, 2020.
  • [2] I. H. Elrobaa, and K. J. New, “COVID-19: pulmonary and extra pulmonary manifestations” Frontiers in public health, vol. 9, 2021.
  • [3] C. Lai, R. Yu, M. Wang,W. Xian, X. Zhao, Q. Tang, and F. Wang, “Shorter incubation period is associated with severe disease progression in patients with COVID-19” Virulence, vol. 11, no. 1, pp. 1443-1452, 2020.
  • [4] A. H. Al‐Ani, R. E. Prentice, C. A. Rentsch, D. Johnson, Z. Ardalan, N. Heerasing, and B. Christensen, “Prevention, diagnosis and management of COVID‐19 in the IBD patient” Alimentary Pharmacology & Therapeutics, vol. 52, no. 1, pp. 54-72, 2020.
  • [5] A. Ayaz, A. Arshad, H. Malik, H. Ali, E. Hussain, and B. Jamil, “Risk factors for intensive care unit admission and mortality in hospitalized COVID-19 patients” Acute and critical care, vol. 35, no. 4, 2020.
  • [6] S. Singh, G. C. Ambooken, R. Setlur, S. K. Paul, M. Kanitkar, S. S. Bhatia, and R. S. Kanwar, “Challenges faced in establishing a dedicated 250 bed COVID-19 intensive care unit in a temporary structure” Trends in Anaesthesia and Critical Care, vol. 36, pp. 9-16, 2021.
  • [7] Y. Xue, and B. M. Makengo, “Twenty years of the Shanghai Cooperation Organization: Achievements, challenges and prospects” Open Journal of Social Sciences, vol. 9, no. 10, pp. 184-200, 2021.
  • [8] I. Ahmad, “Shanghai Cooperation Organization: China, Russia, and Regionalism in Central Asia” Initiatives of Regional Integration in Asia in Comparative Perspective: Concepts, Contents and Prospects, pp. 119-135, 2018.
  • [9] S. Azizi, “China’s Belt and Road Initiative (BRI): The Role of the Shanghai Cooperation Organization (SCO) in Geopolitical Security and Economic Cooperation” Open Journal of Political Science, vol. 14, no. 1, pp. 111-129, 2024.
  • [10] F. Shahid, A. Zameer, and M. Muneeb, “Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM” Chaos, Solitons & Fractals, vol. 140, 2020.
  • [11] H. Abbasimehr, and R. Paki, “Prediction of COVID-19 confirmed cases combining deep learning methods and Bayesian optimization” Chaos, Solitons & Fractals, vol. 142, 2021.
  • [12] H. T. Rauf, M. I. U. Lali, M. A. Khan, S. Kadry, H. Alolaiyan, A. Razaq, and R. Irfan, “Time series forecasting of COVID-19 transmission in Asia Pacific countries using deep neural networks” Personal and Ubiquitous Computing, pp. 1-18, 2023.
  • [13] L. Zhou, C. Zhao, N. Liu, X. Yao, and Z. Cheng, “Improved LSTM-based deep learning model for COVID-19 prediction using optimized approach” Engineering applications of artificial intelligence, vol. 122, 2023.
  • [14] C. C. Ukwuoma, D. Cai, M. B. B. Heyat, O. Bamisile, H. Adun, Z. Al-Huda, and M. A. Al-Antari, “Deep learning framework for rapid and accurate respiratory COVID-19 prediction using chest X-ray images” Journal of King Saud University-Computer and Information Sciences, vol. 35, no. 7, 2023.
  • [15] A. Al-Rashedi, and M. A. Al-Hagery, “Deep learning algorithms for forecasting COVID-19 cases in Saudi Arabia” Applied Sciences, vol. 13, no. 3, 2023.
  • [16] S. Solayman, S. A. Aumi, C. S. Mery, M. Mubassir, and R. Khan, “Automatic COVID-19 prediction using explainable machine learning techniques” International Journal of Cognitive Computing in Engineering, vol. 4, pp. 36-46, 2023.
  • [17] M. Kim, and H. Kim, “A Dynamic Analysis Data Preprocessing Technique for Malicious Code Detection with TF-IDF and Sliding Windows” Electronics, vol. 13, no. 5, 2024.
  • [18] M. A. Muslim, and Y. Dasril, “Company bankruptcy prediction framework based on the most influential features using XGBoost and stacking ensemble learning” International Journal of Electrical and Computer Engineering (IJECE), vol. 11, no. 6, pp. 5549-5557, 2021.
  • [19] A. Asselman, M. Khaldi, and S. Aammou, “Enhancing the prediction of student performance based on the machine learning XGBoost algorithm” Interactive Learning Environments, vol. 31, no. 6, pp. 3360-3379, 2023.
  • [20] A. Rizwan, N. Iqbal, R. Ahmad, and D. H. Kim, “WR-SVM model based on the margin radius approach for solving the minimum enclosing ball problem in support vector machine classification” Applied Sciences, vol. 11, no. 10, 2021.
  • [21] M. Aslani, S. Seipel, “Efficient and decision boundary aware instance selection for support vector machines” Information Sciences, vol. 577, pp. 579-598, 2021.
  • [22] R. Sharma, M. Kim, and A. Gupta, “Motor imagery classification in brain-machine interface with machine learning algorithms: Classical approach to multi-layer perceptron model” Biomedical Signal Processing and Control, 71, 2022.
  • [23] D. D. Oliveira, M. Rampinelli, G. Z. Tozatto, R. V. Andreão, and S. M. Müller, “Forecasting vehicular traffic flow using MLP and LSTM” Neural Computing and applications, vol. 33, pp. 17245-17256, 2021.
  • [24] N. Calik, M. A. Belen, and P. Mahouti, “Deep learning base modified MLP model for precise scattering parameter prediction of capacitive feed antenna”. International journal of numerical modelling: electronic networks, devices and fields, vol. 33, no. 2, 2020.
  • [25] R. Shyam, “Convolutional neural network and its architectures” Journal of Computer Technology & Applications, vol. 12, no. 2, pp. 6-14, 2021.
  • [26] M. P. Akhter, Z. Jiangbin, I. R. Naqvi, M. Abdelmajeed, A. Mehmood, and M. T. Sadiq, “Document-level text classification using single-layer multisize filters convolutional neural network” IEEE Access, vol. 8, pp. 42689-42707, 2020.
  • [27] H. V. Dudukcu, M. Taskiran, Z. G. C. Taskiran, and T. Yildirim, “Temporal Convolutional Networks with RNN approach for chaotic time series prediction” Applied soft computing, vol. 133, 2023.
  • [28] K. Hermann, and A. Lampinen, “What shapes feature representations? exploring datasets, architectures, and training” Advances in Neural Information Processing Systems, vol. 33, pp. 9995-10006, 2020.
  • [29] S. Patil, V. M. Mudaliar, P. Kamat, and S. Gite, “LSTM based Ensemble Network to enhance the learning of long-term dependencies in chatbot” International Journal for Simulation and Multidisciplinary Design Optimization, vol. 11, no. 25, 2020.
  • [30] J. Duan, P. F. Zhang, R. Qiu, and Z. Huang, “Long short-term enhanced memory for sequential recommendation” World Wide Web, vol. 26, no. 2, pp. 561-583, 2023.
  • [31] K. E. ArunKumar, D. V. Kalaga, C. M. S. Kumar, M. Kawaji, and T. M. Brenza, “Forecasting of COVID-19 using deep layer recurrent neural networks (RNNs) with gated recurrent units (GRUs) and long short-term memory (LSTM) cells” Chaos, Solitons & Fractals, vol. 146, 2021.
There are 31 citations in total.

Details

Primary Language English
Subjects Data Engineering and Data Science
Journal Section Vol 7 - Issue 1 - 30 June 2025 [en] [en]
Authors

Anıl Utku 0000-0002-7240-8713

Publication Date June 30, 2025
Submission Date December 20, 2024
Acceptance Date January 29, 2025
Published in Issue Year 2025 Volume: 7 Issue: 1

Cite

APA Utku, A. (2025). Hybrid GA-ConvLSTM Model for Predicting the Transmission Pattern of COVID-19: A Case Study for Shanghai Cooperation Organisation. Journal of Information Systems and Management Research, 7(1), 74-89. https://doi.org/10.59940/jismar.1604942