This study aims to examine, regulate, and update the land transportation of the Erzurum Metropolitan Municipality (EMM), Turkey using computerized calculation techniques. In line with these targets, some critical information has been obtained for study: the number of buses, the number of expeditions, the number of bus lines, and the number and maps of existing routes belonging to EMM. By using the information that has been obtained, this study aims at outlining specific outputs according to the input parameters, such as determining the optimal routes, the average travel, and the journey time. Once all of these situations were considered, various optimization algorithms were used to get the targeted outputs in response to the determined input parameters. In addition, the study found that the problem involved in modeling the land transport network of the EMM is in line with the so-called “traveling salesman problem,” which is a scenario about optimization often discussed in the literature. This study tried to solve this problem by using the genetic algorithm, the clonal selection algorithm, and the DNA computing algorithm. The location data for each bus stops on the bus lines selected for the study were obtained from the EMM, and the distances between these coordinates were obtained by using Google Maps via a Google API. These distances were stored in a distance matrix file and used as input parameters in the application and then were put through optimization algorithms developed initially on the MATLAB platform. The study’s results show that the algorithms developed for the proposed approaches work efficiently and that the distances for the selected bus lines can be shortened.
Optimization Evolutionary Algorithms Traveling Salesman Problem Genetic Algorithm Management Information Systems
In this study, we thank the Erzurum Metropolitan Municipality Public Transportation Administration for the data it provided.
Bu çalışma, Erzurum Büyükşehir Belediyesi'nin (EBB) Türkiye kara ulaşımını bilgisayarlı hesaplama teknikleri kullanarak incelemeyi, düzenlemeyi ve güncellemeyi amaçlamaktadır. Bu hedefler doğrultusunda, çalışma için bazı önemli bilgiler: otobüs sayısı, sefer sayısı, otobüs hattı sayısı ve EBB’ye ait mevcut güzergâh sayısı ve haritaları elde edilmiştir. Bu çalışma, elde edilen bilgileri kullanarak, optimal rotaların belirlenmesi, ortalama seyahat ve yolculuk süresi gibi girdi parametrelerine göre belirli çıktıların ana hatlarını çizmeyi amaçlamaktadır. Tüm bu durumlar göz önüne alındığında, belirlenen girdi parametrelerine karşılık hedeflenen çıktıları elde etmek için çeşitli optimizasyon algoritmaları kullanılmıştır. Çalışma, EBB’ nin ulaşım ağının modellenmesindeki problemin, literatürde sıklıkla tartışılan optimizasyonla ilgili bir senaryo olan “gezgin satıcı problemi” ile uyumlu olduğunu bulmuştur. Çalışmada genetik algoritma, klonal seçim algoritması ve DNA hesaplama algoritması kullanılarak bu problem çözülmeye çalışılmıştır. Çalışmada seçilen otobüs hatlarındaki her bir durak için konum bilgisi EBB'den alınmış ve bu koordinatlar arasındaki mesafeler bir Google API üzerinden Google Maps kullanılarak elde edilmiştir. Bu mesafeler bir mesafe matrisi dosyasında saklanmış ve uygulamada giriş parametreleri olarak kullanılmış daha sonra MATLAB platformunda geliştirilen optimizasyon algoritmalarına aktarılmıştır. Çalışmanın sonuçları, önerilen yaklaşımlar için geliştirilen algoritmaların verimli çalıştığını ve seçilen otobüs hatları için mesafelerin kısaltılabileceğini göstermektedir.
Optimizasyon Evrimsel Algoritmalar Gezgin Satıcı Problemi Genetik Algoritma Yönetim Bilişim Sistemleri
Primary Language | English |
---|---|
Subjects | Computer Software |
Journal Section | Research Articles |
Authors | |
Publication Date | March 2, 2022 |
Submission Date | June 11, 2021 |
Published in Issue | Year 2022 Volume: 5 Issue: 1 |
Journal
of Intelligent Systems: Theory and Applications