Research Article
BibTex RIS Cite

Diagnosing Breast Cancer Using Machine Learning Methods

Year 2022, Volume: 5 Issue: 1, 35 - 41, 02.03.2022
https://doi.org/10.38016/jista.966517

Abstract

Cancer is one of the most important diseases that cause the death of many people around the world. Especially, breast cancer is one of the most common diseases among women. For this reason, any development related to the diagnosis of cancer is critical for people to live healthy lives. Today, the use of machine learning methods makes great contributions to studies for the early diagnosis and prediction of cancer disease. In this study, five different machine learning methods such as k-Nearest Neighbor, Support Vector Machines, Naive Bayes, Decision Trees, and Artificial Neural Networks were applied on two other breast cancer datasets on the Kaggle platform. The obtained results were compared by giving accuracy values and confusion matrix values. The highest accuracy values were obtained in Artificial Neural Networks (ANN) method with an accuracy rate of 98.2456% in the first breast cancer dataset and 93.8596% in the second breast cancer dataset.

References

  • Ahmad, L. G., Eshlaghy, A. T., Poorebrahimi, A., Ebrahimi, M., & Razavi, A. R. (2013). Using three machine learning techniques for predicting breast cancer recurrence. J Health Med Inform, 4(124), 3.
  • Alpaydın, E. (2013). Yapay öğrenme, 2. Baskı, Boğaziçi Üniversitesi Yayınevi, ISBN-13: 978-6-054-23849-1.
  • Alpaydın, E. (2014). Introduction to Machine Learning. MIT Press.
  • Anwer, A. M. O., (2017). Derin Öğrenme Yöntemleri ile Göğüs Kanseri Teşhisi. Yüksek Lisans Tezi, Türk Hava Kurumu Üniversitesi, Fen Bilimleri Enstitüsü.
  • Asri, H., Mousannif, H., Al Moatassime, H., & Noel, T. (2016). Using machine learning algorithms for breast cancer risk prediction and diagnosis. Procedia Computer Science, 83, 1064-1069.
  • Atalay, M., & Çelik, Ö. G. E. (2017). Artificial Intelligence and Machine Learning Applications in Big Data Analysis. Mehmet Akif Ersoy University Journal of Social Sciences Institute, 9(22), 155–172.
  • Bayrak, E. A., Kırcı, P., & Ensari, T. (2019, Nisan). Comparison of machine learning methods for breast cancer diagnosis. In 2019 Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (EBBT) (pp. 1-3). IEEE. Bazazeh, D., & Shubair, R. (2016, December). Comparative study of machine learning algorithms for breast cancer detection and diagnosis. Electronic Devices, Systems and Applications (ICEDSA), 2016 5th International Conference on (pp. 1-4). IEEE.
  • Burakgazi, Y., 2017, Identification of Breast Cancer Sub-Types by Using Machine Learning Techniques, M.Sc Thesis, Dokuz Eylül University, Graduate School of Natural and Applied Sciences. Cancer, 2021, https://www.who.int/en/news-room/fact-sheets/detail/cancer, 01.04.2021.
  • Dhahri, H., Al Maghayreh, E., Mahmood, A., Elkilani, W., & Faisal Nagi, M. (2019). Automated Breast Cancer Diagnosis Based on Machine Learning Algorithms. Journal of Healthcare Engineering, 2019.
  • Ganggayah, M. D., Taib, N. A., Har, Y. C., Lio, P., & Dhillon, S. K. (2019). Predicting factors for survival of breast cancer patients using machine learning techniques. BMC medical informatics and decision making, 19(1), 48.
  • Harrington, P. (2012). Machine learning in Action, Vol. 5, Greenwich, CT: Manning. İşeri, İ. (2014). Mamogram Görüntülerinden Makine Öğrenmesi Yöntemleri ile Meme Kanseri Teşhisi, Doktora Tezi, Sakarya Üniversitesi, Fen Bilimleri Enstitüsü.
  • Kaggle, 2020, https://www.kaggle.com/yuqing01/ breast-cancer, https://www.kaggle.com/ merishnasuwal/breast-cancer-prediction-dataset, 01.04.2021.
  • Magna, A. A. R., Allende-Cid, H., Taramasco, C., Becerra, C., & Figueroa, R. L. (2020). Application of Machine Learning and Word Embeddings in the Classification of Cancer Diagnosis Using Patient Anamnesis. IEEE Access, 8, 106198-106213.
  • Maity, N. G., & Das, S. (2017). Machine learning for improved diagnosis and prognosis in healthcare. In 2017 IEEE Aerospace Conference, pp. 1-9.
  • Poyraz, O. (2012). Tıp’da Veri Madenciliği Uygulamaları: Meme Kanseri Veri Seti Analizi. Yüksek Lisans Tezi, Trakya Üniversitesi, Fen Bilimleri, Enstitüsü.
  • Reddy, A., Soni, B., & Reddy, S. (2020). Breast cancer detection by leveraging Machine Learning. ICT Express.
  • Ruan, Y., Xue, X., Liu, H., Tan, J., & Li, X. (2017). Quantum algorithm for k-nearest neighbors classification based on the metric of hamming distance. International Journal of Theoretical Physics, 56(11), 3496–3507. Doi:10.100710773-017-3514-4.
  • Saxena, S., & Gyanchandani, M. (2020). Machine Learning Methods for Computer-Aided Breast Cancer Diagnosis Using Histopathology: A Narrative Review. Journal of Medical Imaging and Radiation Sciences, 51(1), 182-193.
  • Sherafatian, M. (2018). Tree-based machine learning algorithms identified minimal set of miRNA biomarkers for breast cancer diagnosis and molecular subtyping. Gene, 677, 111-118.
  • Siegel, R. L., Miller, K. D., & Jemal, A. (2018). Cancer statistics, Ca-a Cancer Journal for Clinicians, 68 (1), pp. 7-30.
  • Şık, M. Ş., 2014, Veri Madenciliği ve Kanser Erken Teşhisinde Kullanımı, Yüksek Lisans Tezi, İnönü Üniversitesi, Sosyal Bilimler Enstitüsü.
  • Tapak, L., Shirmohammadi-Khorram, N., Amini, P., Alafchi, B., Hamidi, O., & Poorolajal, J. (2019). Prediction of survival and metastasis in breast cancer patients using machine learning classifiers. Clinical Epidemiology and Global Health, 7(3), 293-299.
  • Tseng, Y. J., Huang, C. E., Wen, C. N., Lai, P. Y., Wu, M. H., Sun, Y. C., & Lu, J. J. (2019). Predicting breast cancer metastasis by using serum biomarkers and clinicopathological data with machine learning technologies. International journal of medical informatics, 128, 79-86.
  • Turgut, S. (2017). Makine Öğrenmesi Yöntemleri Kullanarak Kanser Teşhisi, Yüksek Lisans Tezi, Erciyes Üniversitesi, Fen Bilimleri Enstitüsü.
  • Turgut, S., Dağtekin, M. and Ensari, T. (2018). "Microarray breast cancer data classification using machine learning methods," 2018 Electric Electronics, Computer Science, Biomedical Engineerings' Meeting (EBBT), Istanbul, pp. 1-3, doi: 10.1109/EBBT.2018.8391468. Umadevi, S., & Marseline, K. J. (2017, July). A survey on data mining classification algorithms. In 2017 International Conference on Signal Processing and Communication (ICSPC) (pp. 264-268). IEEE

Göğüs Kanseri Verileri Üzerinde Makine Öğrenmesi Yöntemlerinin Uygulanması

Year 2022, Volume: 5 Issue: 1, 35 - 41, 02.03.2022
https://doi.org/10.38016/jista.966517

Abstract

Kanser dünya genelinde pek çok insanın ölümüne sebep olan en önemli hastalıklardan biridir. Özellikle göğüs kanseri kadınlar arasında en çok rastlanan hastalıkların başında yer almaktadır. Bu sebeple kanser hastalığının teşhisi ile alakalı herhangi bir gelişme insanların sağlıklı bir yaşam sürmesi açısından oldukça önemlidir. Günümüzde makine öğrenmesi yöntemlerinin kullanılması, kanser hastalığının erken teşhisi ve tahmini için yapılan çalışmalara büyük katkılar sağlamaktadır. Bu çalışmada da k-En Yakın Komşu, Destek Vektör Makinaları, Naive Bayes, Karar ağaçları ve Yapay Sinir Ağları gibi beş farklı makine öğrenmesi yöntemleri Kaggle platformunda yer alan iki farklı göğüs kanseri veri kümesi üzerinde uygulanmıştır. Elde edilen sonuçlar doğruluk değerleri ve karmaşıklık matrisi değerleri ile verilerek karşılaştırılmıştır. Birinci göğüs kanseri veri kümesi içinde %98,2456 doğruluk oranıyla ve ikinci göğüs kanseri veri kümesinde %93,8596 doğruluk oranıyla Yapay Sinir Ağları (YSA) yönteminde en yüksek doğruluk değerleri elde edilmiştir.

References

  • Ahmad, L. G., Eshlaghy, A. T., Poorebrahimi, A., Ebrahimi, M., & Razavi, A. R. (2013). Using three machine learning techniques for predicting breast cancer recurrence. J Health Med Inform, 4(124), 3.
  • Alpaydın, E. (2013). Yapay öğrenme, 2. Baskı, Boğaziçi Üniversitesi Yayınevi, ISBN-13: 978-6-054-23849-1.
  • Alpaydın, E. (2014). Introduction to Machine Learning. MIT Press.
  • Anwer, A. M. O., (2017). Derin Öğrenme Yöntemleri ile Göğüs Kanseri Teşhisi. Yüksek Lisans Tezi, Türk Hava Kurumu Üniversitesi, Fen Bilimleri Enstitüsü.
  • Asri, H., Mousannif, H., Al Moatassime, H., & Noel, T. (2016). Using machine learning algorithms for breast cancer risk prediction and diagnosis. Procedia Computer Science, 83, 1064-1069.
  • Atalay, M., & Çelik, Ö. G. E. (2017). Artificial Intelligence and Machine Learning Applications in Big Data Analysis. Mehmet Akif Ersoy University Journal of Social Sciences Institute, 9(22), 155–172.
  • Bayrak, E. A., Kırcı, P., & Ensari, T. (2019, Nisan). Comparison of machine learning methods for breast cancer diagnosis. In 2019 Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (EBBT) (pp. 1-3). IEEE. Bazazeh, D., & Shubair, R. (2016, December). Comparative study of machine learning algorithms for breast cancer detection and diagnosis. Electronic Devices, Systems and Applications (ICEDSA), 2016 5th International Conference on (pp. 1-4). IEEE.
  • Burakgazi, Y., 2017, Identification of Breast Cancer Sub-Types by Using Machine Learning Techniques, M.Sc Thesis, Dokuz Eylül University, Graduate School of Natural and Applied Sciences. Cancer, 2021, https://www.who.int/en/news-room/fact-sheets/detail/cancer, 01.04.2021.
  • Dhahri, H., Al Maghayreh, E., Mahmood, A., Elkilani, W., & Faisal Nagi, M. (2019). Automated Breast Cancer Diagnosis Based on Machine Learning Algorithms. Journal of Healthcare Engineering, 2019.
  • Ganggayah, M. D., Taib, N. A., Har, Y. C., Lio, P., & Dhillon, S. K. (2019). Predicting factors for survival of breast cancer patients using machine learning techniques. BMC medical informatics and decision making, 19(1), 48.
  • Harrington, P. (2012). Machine learning in Action, Vol. 5, Greenwich, CT: Manning. İşeri, İ. (2014). Mamogram Görüntülerinden Makine Öğrenmesi Yöntemleri ile Meme Kanseri Teşhisi, Doktora Tezi, Sakarya Üniversitesi, Fen Bilimleri Enstitüsü.
  • Kaggle, 2020, https://www.kaggle.com/yuqing01/ breast-cancer, https://www.kaggle.com/ merishnasuwal/breast-cancer-prediction-dataset, 01.04.2021.
  • Magna, A. A. R., Allende-Cid, H., Taramasco, C., Becerra, C., & Figueroa, R. L. (2020). Application of Machine Learning and Word Embeddings in the Classification of Cancer Diagnosis Using Patient Anamnesis. IEEE Access, 8, 106198-106213.
  • Maity, N. G., & Das, S. (2017). Machine learning for improved diagnosis and prognosis in healthcare. In 2017 IEEE Aerospace Conference, pp. 1-9.
  • Poyraz, O. (2012). Tıp’da Veri Madenciliği Uygulamaları: Meme Kanseri Veri Seti Analizi. Yüksek Lisans Tezi, Trakya Üniversitesi, Fen Bilimleri, Enstitüsü.
  • Reddy, A., Soni, B., & Reddy, S. (2020). Breast cancer detection by leveraging Machine Learning. ICT Express.
  • Ruan, Y., Xue, X., Liu, H., Tan, J., & Li, X. (2017). Quantum algorithm for k-nearest neighbors classification based on the metric of hamming distance. International Journal of Theoretical Physics, 56(11), 3496–3507. Doi:10.100710773-017-3514-4.
  • Saxena, S., & Gyanchandani, M. (2020). Machine Learning Methods for Computer-Aided Breast Cancer Diagnosis Using Histopathology: A Narrative Review. Journal of Medical Imaging and Radiation Sciences, 51(1), 182-193.
  • Sherafatian, M. (2018). Tree-based machine learning algorithms identified minimal set of miRNA biomarkers for breast cancer diagnosis and molecular subtyping. Gene, 677, 111-118.
  • Siegel, R. L., Miller, K. D., & Jemal, A. (2018). Cancer statistics, Ca-a Cancer Journal for Clinicians, 68 (1), pp. 7-30.
  • Şık, M. Ş., 2014, Veri Madenciliği ve Kanser Erken Teşhisinde Kullanımı, Yüksek Lisans Tezi, İnönü Üniversitesi, Sosyal Bilimler Enstitüsü.
  • Tapak, L., Shirmohammadi-Khorram, N., Amini, P., Alafchi, B., Hamidi, O., & Poorolajal, J. (2019). Prediction of survival and metastasis in breast cancer patients using machine learning classifiers. Clinical Epidemiology and Global Health, 7(3), 293-299.
  • Tseng, Y. J., Huang, C. E., Wen, C. N., Lai, P. Y., Wu, M. H., Sun, Y. C., & Lu, J. J. (2019). Predicting breast cancer metastasis by using serum biomarkers and clinicopathological data with machine learning technologies. International journal of medical informatics, 128, 79-86.
  • Turgut, S. (2017). Makine Öğrenmesi Yöntemleri Kullanarak Kanser Teşhisi, Yüksek Lisans Tezi, Erciyes Üniversitesi, Fen Bilimleri Enstitüsü.
  • Turgut, S., Dağtekin, M. and Ensari, T. (2018). "Microarray breast cancer data classification using machine learning methods," 2018 Electric Electronics, Computer Science, Biomedical Engineerings' Meeting (EBBT), Istanbul, pp. 1-3, doi: 10.1109/EBBT.2018.8391468. Umadevi, S., & Marseline, K. J. (2017, July). A survey on data mining classification algorithms. In 2017 International Conference on Signal Processing and Communication (ICSPC) (pp. 264-268). IEEE
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Artificial Intelligence
Journal Section Research Articles
Authors

Ebru Aydındağ Bayrak 0000-0002-2637-9245

Pınar Kırcı 0000-0002-0442-0235

Tolga Ensari 0000-0003-0896-3058

Engin Seven 0000-0002-7994-2679

Mustafa Dağtekin 0000-0002-0797-9392

Publication Date March 2, 2022
Submission Date July 8, 2021
Published in Issue Year 2022 Volume: 5 Issue: 1

Cite

APA Aydındağ Bayrak, E., Kırcı, P., Ensari, T., Seven, E., et al. (2022). Göğüs Kanseri Verileri Üzerinde Makine Öğrenmesi Yöntemlerinin Uygulanması. Journal of Intelligent Systems: Theory and Applications, 5(1), 35-41. https://doi.org/10.38016/jista.966517
AMA Aydındağ Bayrak E, Kırcı P, Ensari T, Seven E, Dağtekin M. Göğüs Kanseri Verileri Üzerinde Makine Öğrenmesi Yöntemlerinin Uygulanması. JISTA. March 2022;5(1):35-41. doi:10.38016/jista.966517
Chicago Aydındağ Bayrak, Ebru, Pınar Kırcı, Tolga Ensari, Engin Seven, and Mustafa Dağtekin. “Göğüs Kanseri Verileri Üzerinde Makine Öğrenmesi Yöntemlerinin Uygulanması”. Journal of Intelligent Systems: Theory and Applications 5, no. 1 (March 2022): 35-41. https://doi.org/10.38016/jista.966517.
EndNote Aydındağ Bayrak E, Kırcı P, Ensari T, Seven E, Dağtekin M (March 1, 2022) Göğüs Kanseri Verileri Üzerinde Makine Öğrenmesi Yöntemlerinin Uygulanması. Journal of Intelligent Systems: Theory and Applications 5 1 35–41.
IEEE E. Aydındağ Bayrak, P. Kırcı, T. Ensari, E. Seven, and M. Dağtekin, “Göğüs Kanseri Verileri Üzerinde Makine Öğrenmesi Yöntemlerinin Uygulanması”, JISTA, vol. 5, no. 1, pp. 35–41, 2022, doi: 10.38016/jista.966517.
ISNAD Aydındağ Bayrak, Ebru et al. “Göğüs Kanseri Verileri Üzerinde Makine Öğrenmesi Yöntemlerinin Uygulanması”. Journal of Intelligent Systems: Theory and Applications 5/1 (March 2022), 35-41. https://doi.org/10.38016/jista.966517.
JAMA Aydındağ Bayrak E, Kırcı P, Ensari T, Seven E, Dağtekin M. Göğüs Kanseri Verileri Üzerinde Makine Öğrenmesi Yöntemlerinin Uygulanması. JISTA. 2022;5:35–41.
MLA Aydındağ Bayrak, Ebru et al. “Göğüs Kanseri Verileri Üzerinde Makine Öğrenmesi Yöntemlerinin Uygulanması”. Journal of Intelligent Systems: Theory and Applications, vol. 5, no. 1, 2022, pp. 35-41, doi:10.38016/jista.966517.
Vancouver Aydındağ Bayrak E, Kırcı P, Ensari T, Seven E, Dağtekin M. Göğüs Kanseri Verileri Üzerinde Makine Öğrenmesi Yöntemlerinin Uygulanması. JISTA. 2022;5(1):35-41.

Journal of Intelligent Systems: Theory and Applications