Research Article
BibTex RIS Cite

Determination of Coronary Artery Disease Risk Level of Individuals by Fuzzy Expert System Approach

Year 2022, Volume: 5 Issue: 2, 153 - 160, 21.09.2022
https://doi.org/10.38016/jista.1144535

Abstract

Coronary Artery Disease (CAD) is one of the most important diseases that cause people to die worldwide. Although developments in medicine facilitate the treatment of this disease, there are still some inadequacies in identifying and evaluating risk factors. In this study, various risk factors used in the diagnosis were determined by considering individuals with typical symptoms and complaints related to CAD. In addition, an artificial intelligence system has been developed to determine the CAD risk levels of individuals by using the fuzzy expert system method. The designed system is rule-based, and this rule-based structure was created with the knowledge obtained from medical experts. The system provides self-risk assessment and customized recommendations to reduce individuals' disease risk. In this way, the increase in the number of people who have coronary artery disease can be prevented or delayed.

References

  • Abdualimov, T.P., Obrezan, A.G., 2021. Prediction of the fact and degree of coronary artery disease using the processing of clinical and instrumental data by artificial intelligence. Vestnik of Saint Petersburg University. Medicine, 16(3), 153–158.
  • Abduljabar, J.S., 2011. Bulanık mantık yöntemleri kullanılarak gazlı içeceklerde karbondioksit kontrolü. Ankara Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Ankara, Türkiye.
  • Abdulrahman, U.F.I., Panford, J.K., Hayfron-Acquah, J.B., 2014. Fuzzy logic approach to credit scoring for micro finances in Ghana. International Journal of Computer Applications, 94(8), 11-18.
  • Adeli, A., Neshat, M., 2010. A fuzzy expert system for heart disease diagnosis. International MultiConference of Engineeers and Computer Scientists, 17-19 March 2010, Hong Kong, pp. 1-6.
  • Ahcıoğlu, A., Yılmazel, G., 2021. Halk sağlığı gözüyle koroner arter hastalığı ve sağlık okuryazarlığı. Türkiye Sağlık Okuryazarlığı Dergisi, 2(2), 81-88.
  • Allahverdi, N., Torun, S., Saritas, I., 2007. Design of a fuzzy expert system for determination of coronary heart disease risk. International Conference on Computer Systems and Technologies, 14-15 June 2007, Bulgaria, pp. 1-8.
  • Amelia, L., Wahab, D.A., Hassan, A., 2009. Modelling of palm oil production using fuzzy expert system. Expert Systems with Applications, 36(5), 8735-8749.
  • Anonim, 2021. Angiography to diagnose the coronary artery disease [Internet]. Baskent University Ankara Hospital. http://www.baskent-ank.edu.tr/saglik-rehberi/oku.php?konu=koroner-arter-hastaliginin-tanisinde-anjiyografi. Erişim Tarihi: 5 Haziran 2021.
  • Arab, S., Rezaee, K., Moghaddam, G., 2021. A novel fuzzy expert system design to assist with peptic ulcer disease diagnosis. Cogent Engineering, 8, 1-23.
  • Atomsa, Y., Muhammad, L.J., Ishaq, F.S., Abdullahi, Y., 2022. Feature selection based fuzzy expert system for efficient diagnosis of coronary artery disease. Journal of Clinical and Medical Images, Case Reports, 2(2), 1-9.
  • Babacan Abanonu, G., Türkyılmaz, E., Güzelbulut, F., Denizli, N., Dayan, A., Okuroğlu, N., Karatoprak, C., Aydın, N., Demirtunç, R., 2009. Koroner arter hastalığı majör risk faktörleri ve c-reaktif proteinin değerlendirilmesi. Haydarpaşa Numune Eğitim ve Araştırma Hastanesi Tıp Dergisi, 49(3), 159-167.
  • Dobrić, G., Žarković, M., 2021. Fuzzy expert system for metal‑oxide surge arrester condition monitoring. Electrical Engineering, 103, 91-101.
  • Domínguez Hernández, K.R., Aguilar Lasserre, A.A., Posada Gómez, R., Palet Guzmán, J.A., González Sánchez, B.E., 2013. Development of an expert system as a diagnostic support of cervical cancer in atypical glandular cells, based on fuzzy logics and image interpretation. Computational and Mathematical Methods in Medicine, 1–17.
  • Duarte, P.S., Mastrocolla, L.E., Farsky, P.S., Sampaio, C.R.E.P.S., Tonelli, P.A., Barros, L.C., Ortega, N.R., Pereira, J.C.R., 2006. Selection of patients for myocardial perfusion scintigraphy based on fuzzy sets theory applied to clinical-epidemiological data and treadmill test results. Brazilian Journal of Medical and Biological Research, 39(1), 9–18.
  • Faieq, A.K., Mijwil, M.M., 2022. Prediction of heart diseases utilising support vector machine and artificial neural network. Indonesian Journal of Electrical Engineering and Computer Science, 26(1), 374-380.
  • Hernández-Vera, B., Lasserre, A.A.A., Cedillo-Campos, M.G., Herrera-Franco, L.E., Ochoa-Robles, J., 2017. Expert system based on fuzzy logic to define the production process in the coffee industry. Journal of Food Process Engineering, 40(2), e12389.
  • Karimi, H., Khamforoosh, K., Maihami, V., 2022. Improvement of DBR routing protocol in underwater wireless sensor networks using fuzzy logic and bloom filter. Plos One, 17(2), 1-20.
  • Khatibi, V., Montazer, G.A., 2010. A fuzzy-evidential hybrid inference engine for coronary heart disease risk assessment. Expert Systems with Applications, 37(12), 8536–8542.
  • Maranate, T., Pongpullponsak, A., Ruttanaumpawan, P., 2015. The prioritization of clinical risk factors of obstructive sleep apnea severity using fuzzy analytic hierarchy process. Computational and Mathematical Methods in Medicine, 1–13.
  • Masoumeh, Z., Mohamad, K., Hasan, J., 2021. Design of a new fuzzy expert system for project portfolio risk management. Innovation Management and Operational Strategies, 1(4), 403-421.
  • Matinfar, F., Golpaygani, A.T., 2022. A fuzzy expert system for early diagnosis of multiple sclerosis. Journal of Biomedical Physics & Engineering, 12(2), 181-188.
  • Muthukaruppan, S., Er, M.J., 2012. A hybrid particle swarm optimization based fuzzy expert system for the diagnosis of coronary artery disease. Expert Systems with Applications, 39(14), 11657–11665.
  • Özkan, M., 2018. Bulanık çıkarım sistemi ile bireysel personel performansının değerlendirilmesinde bir uygulama. Cumhuriyet Üniversitesi İktisadi ve İdari Bilimler Dergisi, 19(2), 372-388.
  • Pal, D., Mandana, K.M., Pal, S., Sarkar, D., Chakraborty, C., 2012. Fuzzy expert system approach for coronary artery disease screening using clinical parameters. Knowledge-Based Systems, 36, 162–174.
  • Parvin, R, Abhari, A., 2012. Fuzzy database for heart disease diagnosis. Medical Processes Modeling and Simulation of the 2012 Autumn Simulation Multi-Conference, 28-31 October 2012, USA.
  • Schuster, A., Adamson, K., Bell, D.A., 2002. Fuzzy Logic in a decision support system in the domain of coronary heart disease risk assessment. In: Barro S., Marin R. (ed.) Fuzzy logic in medicine, Physica, Heidelberg.
  • Sikchi, S.S., Sikchi, S., Ali, M.S., 2013. Design of fuzzy expert system for diagnosis of cardiac diseases. International Journal of Medical Science and Public Health, 2(1), 56–61.
  • Singla, N., Sadawarti, H., Singla, J., Kaur, B., 2020. Development of multilayer fuzzy inference system for diagnosis of renal cancer. Journal of Intelligent & Fuzzy Systems, 39, 885–898.
  • Şahan, D., Gezer, D., 2021. Koroner arter hastalarında çevrimiçi sağlık uygulamalarının kullanımı. Van Sağlık Bilimleri Dergisi, 14(1), 106-113.
  • Thani, I., Kasbe, T., 2022. Expert system based on fuzzy rules for diagnosing breast cancer. Health and Technology, 12, 473-489.
  • Vukadinovic, D., 2013. Fuzzy logic: applications, systems and Technologies, Nova Science Publishers, New York.
  • Yildiz, B., 2008. Ratio analysis with fuzzy logic: an emprical study. World Account Sci., 10(2), 183–205.

Bireylerin Koroner Arter Hastalığı Risk Seviyesinin Bulanık Uzman Sistem Yaklaşımı İle Belirlenmesi

Year 2022, Volume: 5 Issue: 2, 153 - 160, 21.09.2022
https://doi.org/10.38016/jista.1144535

Abstract

Koroner Arter Hastalığı (KAH) dünya genelinde insanların hayatını kaybetmesine sebep olan en önemli hastalıklardan biridir. Tıp alanında yaşanan gelişmeler bu hastalığın tedavisini kolaylaştırsa da risk faktörlerinin belirlenmesi ve değerlendirilmesinde hala birtakım yetersizlikler söz konusudur. Bu çalışmada, KAH ile ilgili yaygın belirti ve şikayetleri olan bireyler göz önüne alınarak tanıda kullanılan çeşitli risk faktörleri belirlenmiştir. Ayrıca bulanık uzman sistem yöntemi kullanılarak bireylerin KAH risk düzeylerini tespit etmek amacıyla bir yapay zeka sistemi geliştirilmiştir. Tasarlanan sistem kural tabanlı olup, bu kural tabanı yapısı tıp uzmanlarından edinilen bilgilerle oluşturulmuştur. Sistem, bireylerin hastalık riskini azaltmak için kendi kendine risk değerlendirmesi ve özelleştirilmiş öneriler sunmaktadır. Bu sayede koroner arter hastalığından muzdarip kişilerin sayısındaki artış önlenebilir veya geciktirilebilir.

References

  • Abdualimov, T.P., Obrezan, A.G., 2021. Prediction of the fact and degree of coronary artery disease using the processing of clinical and instrumental data by artificial intelligence. Vestnik of Saint Petersburg University. Medicine, 16(3), 153–158.
  • Abduljabar, J.S., 2011. Bulanık mantık yöntemleri kullanılarak gazlı içeceklerde karbondioksit kontrolü. Ankara Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Ankara, Türkiye.
  • Abdulrahman, U.F.I., Panford, J.K., Hayfron-Acquah, J.B., 2014. Fuzzy logic approach to credit scoring for micro finances in Ghana. International Journal of Computer Applications, 94(8), 11-18.
  • Adeli, A., Neshat, M., 2010. A fuzzy expert system for heart disease diagnosis. International MultiConference of Engineeers and Computer Scientists, 17-19 March 2010, Hong Kong, pp. 1-6.
  • Ahcıoğlu, A., Yılmazel, G., 2021. Halk sağlığı gözüyle koroner arter hastalığı ve sağlık okuryazarlığı. Türkiye Sağlık Okuryazarlığı Dergisi, 2(2), 81-88.
  • Allahverdi, N., Torun, S., Saritas, I., 2007. Design of a fuzzy expert system for determination of coronary heart disease risk. International Conference on Computer Systems and Technologies, 14-15 June 2007, Bulgaria, pp. 1-8.
  • Amelia, L., Wahab, D.A., Hassan, A., 2009. Modelling of palm oil production using fuzzy expert system. Expert Systems with Applications, 36(5), 8735-8749.
  • Anonim, 2021. Angiography to diagnose the coronary artery disease [Internet]. Baskent University Ankara Hospital. http://www.baskent-ank.edu.tr/saglik-rehberi/oku.php?konu=koroner-arter-hastaliginin-tanisinde-anjiyografi. Erişim Tarihi: 5 Haziran 2021.
  • Arab, S., Rezaee, K., Moghaddam, G., 2021. A novel fuzzy expert system design to assist with peptic ulcer disease diagnosis. Cogent Engineering, 8, 1-23.
  • Atomsa, Y., Muhammad, L.J., Ishaq, F.S., Abdullahi, Y., 2022. Feature selection based fuzzy expert system for efficient diagnosis of coronary artery disease. Journal of Clinical and Medical Images, Case Reports, 2(2), 1-9.
  • Babacan Abanonu, G., Türkyılmaz, E., Güzelbulut, F., Denizli, N., Dayan, A., Okuroğlu, N., Karatoprak, C., Aydın, N., Demirtunç, R., 2009. Koroner arter hastalığı majör risk faktörleri ve c-reaktif proteinin değerlendirilmesi. Haydarpaşa Numune Eğitim ve Araştırma Hastanesi Tıp Dergisi, 49(3), 159-167.
  • Dobrić, G., Žarković, M., 2021. Fuzzy expert system for metal‑oxide surge arrester condition monitoring. Electrical Engineering, 103, 91-101.
  • Domínguez Hernández, K.R., Aguilar Lasserre, A.A., Posada Gómez, R., Palet Guzmán, J.A., González Sánchez, B.E., 2013. Development of an expert system as a diagnostic support of cervical cancer in atypical glandular cells, based on fuzzy logics and image interpretation. Computational and Mathematical Methods in Medicine, 1–17.
  • Duarte, P.S., Mastrocolla, L.E., Farsky, P.S., Sampaio, C.R.E.P.S., Tonelli, P.A., Barros, L.C., Ortega, N.R., Pereira, J.C.R., 2006. Selection of patients for myocardial perfusion scintigraphy based on fuzzy sets theory applied to clinical-epidemiological data and treadmill test results. Brazilian Journal of Medical and Biological Research, 39(1), 9–18.
  • Faieq, A.K., Mijwil, M.M., 2022. Prediction of heart diseases utilising support vector machine and artificial neural network. Indonesian Journal of Electrical Engineering and Computer Science, 26(1), 374-380.
  • Hernández-Vera, B., Lasserre, A.A.A., Cedillo-Campos, M.G., Herrera-Franco, L.E., Ochoa-Robles, J., 2017. Expert system based on fuzzy logic to define the production process in the coffee industry. Journal of Food Process Engineering, 40(2), e12389.
  • Karimi, H., Khamforoosh, K., Maihami, V., 2022. Improvement of DBR routing protocol in underwater wireless sensor networks using fuzzy logic and bloom filter. Plos One, 17(2), 1-20.
  • Khatibi, V., Montazer, G.A., 2010. A fuzzy-evidential hybrid inference engine for coronary heart disease risk assessment. Expert Systems with Applications, 37(12), 8536–8542.
  • Maranate, T., Pongpullponsak, A., Ruttanaumpawan, P., 2015. The prioritization of clinical risk factors of obstructive sleep apnea severity using fuzzy analytic hierarchy process. Computational and Mathematical Methods in Medicine, 1–13.
  • Masoumeh, Z., Mohamad, K., Hasan, J., 2021. Design of a new fuzzy expert system for project portfolio risk management. Innovation Management and Operational Strategies, 1(4), 403-421.
  • Matinfar, F., Golpaygani, A.T., 2022. A fuzzy expert system for early diagnosis of multiple sclerosis. Journal of Biomedical Physics & Engineering, 12(2), 181-188.
  • Muthukaruppan, S., Er, M.J., 2012. A hybrid particle swarm optimization based fuzzy expert system for the diagnosis of coronary artery disease. Expert Systems with Applications, 39(14), 11657–11665.
  • Özkan, M., 2018. Bulanık çıkarım sistemi ile bireysel personel performansının değerlendirilmesinde bir uygulama. Cumhuriyet Üniversitesi İktisadi ve İdari Bilimler Dergisi, 19(2), 372-388.
  • Pal, D., Mandana, K.M., Pal, S., Sarkar, D., Chakraborty, C., 2012. Fuzzy expert system approach for coronary artery disease screening using clinical parameters. Knowledge-Based Systems, 36, 162–174.
  • Parvin, R, Abhari, A., 2012. Fuzzy database for heart disease diagnosis. Medical Processes Modeling and Simulation of the 2012 Autumn Simulation Multi-Conference, 28-31 October 2012, USA.
  • Schuster, A., Adamson, K., Bell, D.A., 2002. Fuzzy Logic in a decision support system in the domain of coronary heart disease risk assessment. In: Barro S., Marin R. (ed.) Fuzzy logic in medicine, Physica, Heidelberg.
  • Sikchi, S.S., Sikchi, S., Ali, M.S., 2013. Design of fuzzy expert system for diagnosis of cardiac diseases. International Journal of Medical Science and Public Health, 2(1), 56–61.
  • Singla, N., Sadawarti, H., Singla, J., Kaur, B., 2020. Development of multilayer fuzzy inference system for diagnosis of renal cancer. Journal of Intelligent & Fuzzy Systems, 39, 885–898.
  • Şahan, D., Gezer, D., 2021. Koroner arter hastalarında çevrimiçi sağlık uygulamalarının kullanımı. Van Sağlık Bilimleri Dergisi, 14(1), 106-113.
  • Thani, I., Kasbe, T., 2022. Expert system based on fuzzy rules for diagnosing breast cancer. Health and Technology, 12, 473-489.
  • Vukadinovic, D., 2013. Fuzzy logic: applications, systems and Technologies, Nova Science Publishers, New York.
  • Yildiz, B., 2008. Ratio analysis with fuzzy logic: an emprical study. World Account Sci., 10(2), 183–205.
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Industrial Engineering
Journal Section Research Articles
Authors

Çağatay Teke 0000-0002-6975-8544

Early Pub Date June 14, 2022
Publication Date September 21, 2022
Submission Date July 17, 2022
Published in Issue Year 2022 Volume: 5 Issue: 2

Cite

APA Teke, Ç. (2022). Bireylerin Koroner Arter Hastalığı Risk Seviyesinin Bulanık Uzman Sistem Yaklaşımı İle Belirlenmesi. Journal of Intelligent Systems: Theory and Applications, 5(2), 153-160. https://doi.org/10.38016/jista.1144535
AMA Teke Ç. Bireylerin Koroner Arter Hastalığı Risk Seviyesinin Bulanık Uzman Sistem Yaklaşımı İle Belirlenmesi. JISTA. September 2022;5(2):153-160. doi:10.38016/jista.1144535
Chicago Teke, Çağatay. “Bireylerin Koroner Arter Hastalığı Risk Seviyesinin Bulanık Uzman Sistem Yaklaşımı İle Belirlenmesi”. Journal of Intelligent Systems: Theory and Applications 5, no. 2 (September 2022): 153-60. https://doi.org/10.38016/jista.1144535.
EndNote Teke Ç (September 1, 2022) Bireylerin Koroner Arter Hastalığı Risk Seviyesinin Bulanık Uzman Sistem Yaklaşımı İle Belirlenmesi. Journal of Intelligent Systems: Theory and Applications 5 2 153–160.
IEEE Ç. Teke, “Bireylerin Koroner Arter Hastalığı Risk Seviyesinin Bulanık Uzman Sistem Yaklaşımı İle Belirlenmesi”, JISTA, vol. 5, no. 2, pp. 153–160, 2022, doi: 10.38016/jista.1144535.
ISNAD Teke, Çağatay. “Bireylerin Koroner Arter Hastalığı Risk Seviyesinin Bulanık Uzman Sistem Yaklaşımı İle Belirlenmesi”. Journal of Intelligent Systems: Theory and Applications 5/2 (September 2022), 153-160. https://doi.org/10.38016/jista.1144535.
JAMA Teke Ç. Bireylerin Koroner Arter Hastalığı Risk Seviyesinin Bulanık Uzman Sistem Yaklaşımı İle Belirlenmesi. JISTA. 2022;5:153–160.
MLA Teke, Çağatay. “Bireylerin Koroner Arter Hastalığı Risk Seviyesinin Bulanık Uzman Sistem Yaklaşımı İle Belirlenmesi”. Journal of Intelligent Systems: Theory and Applications, vol. 5, no. 2, 2022, pp. 153-60, doi:10.38016/jista.1144535.
Vancouver Teke Ç. Bireylerin Koroner Arter Hastalığı Risk Seviyesinin Bulanık Uzman Sistem Yaklaşımı İle Belirlenmesi. JISTA. 2022;5(2):153-60.

Journal of Intelligent Systems: Theory and Applications