Research Article
BibTex RIS Cite

A Proposal of Hybrid Demand Forecasting Model in Supply Chain: Steel Industry Application

Year 2024, Volume: 7 Issue: 2, 66 - 80, 26.09.2024
https://doi.org/10.38016/jista.1427938

Abstract

Long manufacturing times, high in-process stocks and low machine utilization rates are important planning problems encountered in production systems. Among these, order delays due to long manufacturing times are one of the important problem areas. In this study, it is aimed to investigate the reasons for order delays in the steel industry and to develop a demand forecasting model proposal to eliminate them and ensure continuity in the supply chain. The proposed model has a hybrid structure based on feature selection and machine learning algorithms in order to determine the raw materials and semi-finished products needed for products and which are of primary importance in order delays, at the required time and quantity. In addition to past sales amounts, energy costs, steel raw material price and Euro/Dollar parity were included in the model as independent variables. In order to determine the most relevant features in development of demand forecasting models, 6 different feature selection methods were applied. The models were trained with 3 different machine learning algorithms. The developed models were applied on 89-month data of 4 products of a company operating in the steel industry. According to the experimental results, although it was concluded that feature selection methods generally increased performance of forecasting models, it was evaluated that combination of feature set and demand forecasting method showing the most appropriate forecasting performance for each product differed. By the agency of the developed models, 93.6%, 94.7%, 90.3% and 91.5% prediction accuracy values were achieved for products, respectively.

References

  • Acı, M. ve Doğansoy, G. A. 2022. Makine öğrenmesi ve derin öğrenme yöntemleri kullanılarak e-perakende sektörüne yönelik talep tahmini. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 37(3), 1325-1340.
  • Aydın, M. R. ve Yazıcıoğlu, O. 2019. Yapay Sinir Ağları ile Talep Tahmini: Perakende Sektöründe Bir Uygulama. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 18(35), 43-55.
  • Bansal, P., Vanjani, A., Mehta, A., Kavitha, J. C. ve Kumar, S. 2022. Improving the classification accuracy of melanoma detection by performing feature selection using binary Harris hawks optimization algorithm. Soft Computing, 26(17), 8163-8181.
  • Catal, C., Kaan, E. C. E., Arslan, B. ve Akbulut, A. 2019. Benchmarking of regression algorithms and time series analysis techniques for sales forecasting. Balkan Journal of Electrical and Computer Engineering, 7(1), 20-26.
  • Chidroop, I. ve Moharir, M. 2020. Predicting the Propensity of Order Cancellation in the Ecommerce Domain. International Journal of Research in Engineering, Science and Management, 3(6). s. 658-664.
  • Chicco, D., Warrens, M. J., ve Jurman, G. 2021. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science, 7.
  • Diren, D. D., Boran, S., ve Cil, I. 2020. Integration of machine learning techniques and control charts in multivariate processes. Scientia Iranica, 27(6), 3233- 3241.
  • El Filali, A., El Filali, S. ve Jadli, A. 2022. Application of Deep Learning in the Supply Chain Management: A comparison of forecasting demand for electrical products using different ANN methods. In 2022 International Conference on Electrical, Computer and Energy Technologies (ICECET) (pp. 1-7).
  • Elgamal, Z. M., Yasin, N. B. M., Tubishat, M., Alswaitti, M., ve Mirjalili, S. 2020. An improved harris hawks optimization algorithm with simulated annealing for feature selection in the medical field. IEEE access, 8, 186638-186652.
  • Fanoodi, B., Malmir, B. ve Jahantigh, F. F. 2019. Reducing demand uncertainty in the platelet supply chain through artificial neural networks and ARIMA models. Computers in biology and medicine, 113, 103415.
  • Feizabadi, J. 2022. Machine learning demand forecasting and supply chain performance. International Journal of Logistics Research and Applications, 25(2), 119-142.
  • Gökler, S. H. 2020. Kan Bankalarında Talep Tahmini ve Stokastik Stok Yönetimi. Doktora Tezi, Sakarya Üniversitesi.
  • Güven, İ. 2020. Perakende Hazır Giyim Endüstrisinde Yapay Zeka Yöntemleri ile Talep Tahmini. Doktora Tezi, Karabük Üniversitesi.
  • Han, G., Sönmez, E. F., Avcı, S. ve Aladağ, Z. 2022. Uygun Normalizasyon Tekniği ve Yapay Sinir Ağları Analizi ile Otomobil Satış Tahminlemesi. İşletme Ekonomi ve Yönetim Araştırmaları Dergisi, 5(1), 19-45.
  • Heidari, A. A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M. ve Chen, H. 2019. Harris hawks optimization: Algorithm and applications. Future generation computer systems, 97, 849-872.
  • Huyen, C. 2022. Designing machine learning systems. O'Reilly Media.
  • Ismael, O. M., Qasim, O. S. ve Algamal, Z. Y. 2021. A new adaptive algorithm for v-support vector regression with feature selection using Harris hawks optimization algorithm. In Journal of Physics: Conference Series (Vol. 1897, No. 1, p. 012057). IOP Publishing.
  • İmece, S. ve Beyca, Ö. F. 2022. Demand Forecasting with Integration of Time Series and Regression Models in Pharmaceutical Industry. International Journal of Advances in Engineering and Pure Sciences, 34(3), 415-425.
  • Kacar, İ. 2024. Makine Öğrenimi Kullanarak Bir Mekanik Jiroskobun Yalpalama Tahmininde Zaman Serisi Modeli. Journal of Intelligent Systems: Theory and Applications, 7(1), 14-26.
  • Kennedy, J. 2010. Particle swarm optimization. In: Encyclopedia of Machine Learning, 760–766.
  • Keung, K. L., Lee, C. K. ve Yiu, Y. H. 2021. A machine learning predictive model for shipment delay and demand forecasting for warehouses and sales data. In 2021 ieee international conference on industrial engineering and engineering management (ieem).1010-1014. IEEE.
  • Kochak, A. ve Sharma, S. 2015. Demand forecasting using neural network for supply chain management. International journal of mechanical engineering and robotics research, 4(1), 96-104.
  • Korkut, D. 2019. Yapay sinir ağları yöntemi ile talep tahmini ve ayakkabı sektörüne uygulaması. Yayımlanmamış Yüksek Lisans Tezi., Hacı Bayram Veli Üniversitesi.
  • KS, S. R. ve Murugan, S. 2017. Memory based hybrid dragonfly algorithm for numerical optimization problems. Expert Systems with Applications, 83, 63-78.
  • Kück, M. ve Freitag, M. 2021. Forecasting of customer demands for production planning by local k-nearest neighbor models. International Journal of Production Economics, 231, 107837.
  • Lazzeri, F. 2020. Machine learning for time series forecasting with Python. John Wiley & Sons.
  • Lee, H. L., V. Padmanabhan ve S. Whang. 1997. “Information Distortion in a Supply Chain: the Bullwhip Effect.” Management Science 43: 546–558.
  • LightGBM. 2023, LightGBM Regressor, Erişim Tarihi:20.12.2023. https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMRegressor.html
  • Lingireddy, S. ve Ormsbee, L. E. 2002. Hydraulic network calibration using genetic optimization. Civil Engineering and Environmental Systems, 19(1), 13-39.
  • Merkuryeva, G., Valberga, A. ve Smirnov, A. 2019. Demand forecasting in pharmaceutical supply chains: A case study. Procedia Computer Science, 149, 3-10.
  • Mirjalili, S.; Mirjalili, S.M. ve Lewis, A. 2014. Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61.
  • Mohammed, M., El-Shafie, H. ve Munir, M. 2023. Development and Validation of Innovative Machine Learning Models for Predicting Date Palm Mite Infestation on Fruits. Agronomy, 13(2), 494.
  • Mohan, B. A., Harshavardhan, B., Karan, S., Shariff, M. J. ve Pranav, M. G. 2021. Demand forecasting and route optimization in supply chain industry using data Analytics. In 2021 Asian Conference on Innovation in Technology (ASIANCON). 1-7. IEEE.
  • Muraina, I. 2022. Ideal dataset splitting ratios in machine learning algorithms: general concerns for data scientists and data analysts. In 7th International Mardin Artuklu Scientific Research Conference (pp. 496-504).
  • Orzechowski, A., Lugosch, L., Shu, H., Yang, R., Li, W. ve Meyer, B. H. 2023. A data-driven framework for medium-term electric vehicle charging demand forecasting. Energy and AI, 14, 100267.
  • Özçelik, T. Ö., Kibar, A. ve Bal, M.E., 2021. Sosyal Medyadan Veri Çekme Örnekleri. Mühendislikte Yapay Zeka ve Uygulamaları 4, Ed. Gülseçen, S., İnal, M.M., Torkul, O., Uçar, M.K., Sakarya Üniversitesi Yayınları, 79-101.
  • Poli, R., Kennedy, J. ve Blackwell, T. 2007. Particle swarm optimization: An overview. Swarm intelligence, 1, 33-57.
  • Sauro, J. ve Lewis, J. R. 2016. Quantifying the user experience: Practical statistics for user research. Morgan Kaufmann.
  • Spiliotis, E. 2022. Decision trees for time-series forecasting. Foresight, 1, 30-44.
  • Xu, S. ve Wang, S. 2022. Tourism Demand Prediction Model Using Particle Swarm Algorithm and Neural Network in Big Data Environment. Journal of Environmental and Public Health, 2022.
  • Tan, C. W., Dempster, A., Bergmeir, C. ve Webb, G. I. 2022. MultiRocket: multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery, 36(5), 1623-1646.
  • Tavukçu, A. S. ve Sennaroğlu, B. 2021. Applying Forecasting Methods to Reduce the Cost of Spare Parts Inventory in a Company. Endüstri Mühendisliği, 32(3), 396-413.
  • Thaher, T., ve Arman, N. 2020. Efficient multi-swarm binary harris hawks optimization as a feature selection approach for software fault prediction. In 2020 11th International conference on information and communication systems (ICICS). 249-254. IEEE.
  • Thawkar, S. 2022. Feature selection and classification in mammography using hybrid crow search algorithm with Harris hawks optimization. Biocybernetics and Biomedical Engineering, 42(4), 1094-1111.
  • Torun, Z. ve DESTE, M. 2021. Sağlık İşletmelerinde Malzeme Yönetiminde Uygun Talep Tahmin Yönteminin Belirlenmesine Yönelik Bir Uygulama. 19 Mayıs Sosyal Bilimler Dergisi, 2(3), 581-613.
  • Türk, E. ve Kiani, F. Yapay Sinir Ağları ile Talep Tahmini Yapma: Beyaz Eşya Üretim Planlama Örneği. İstanbul Sabahattin Zaim Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 1(1), 30-37.
  • Yadav, A. ve Deep, K. 2013. Constrained optimization using gravitational search algorithm. National Academy Science Letters, 36, 527-534.
  • Yani, L. P. E., ve Aamer, A. 2023. Demand forecasting accuracy in the pharmaceutical supply chain: a machine learning approach. International Journal of Pharmaceutical and Healthcare Marketing, 17(1), 1-23.
  • Yaşar, H., Çağıl, G., Torkul, O. ve Şişci, M. 2021. Cylinder pressure prediction of an HCCI engine using deep learning. Chinese Journal of Mechanical Engineering, 34, 1-8.
  • Zeng, D., Chen, L., Zhao, S., Ou, J., Yuan, H. ve Wu, T. 2022. An Optimized Grey Wolf Algorithm. In 2022 IEEE International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC). 200-205. IEEE.

Tedarik Zincirinde Hibrit Talep Tahmin Modeli Önerisi: Çelik Sektörü Uygulaması

Year 2024, Volume: 7 Issue: 2, 66 - 80, 26.09.2024
https://doi.org/10.38016/jista.1427938

Abstract

Uzun imalat süreleri, süreç içi stokların yüksek olması ve tezgahlardan yararlanma oranlarının düşük olması üretim sistemlerinde karşılaşılan önemli planlama problemlerindendir. Bunların içerisinde, imalat sürelerinin uzun olması dolayısıyla sipariş gecikmelerinin meydana gelmesi önemli problem alanlarından birisidir. Bu çalışmada, çelik sektöründe sipariş gecikmelerinin sebepleri araştırılarak bunların ortadan kaldırılması ile tedarik zincirinde sürekliliğin sağlanması için bir talep tahmini modeli önerisi geliştirilmesi amaçlanmıştır. Önerilen model, ürünler için ihtiyaç duyulan ve sipariş gecikmelerinde birincil derecede önemli olan hammadde ve yarı mamulün ihtiyaç duyulan zamanda ve miktarda belirlenebilmesi için nitelik seçimi ve makine öğrenmesi algoritmalarına dayalı hibrit bir yapıdadır. Geçmiş dönem satış miktarlarının yanı sıra enerji maliyetleri, çelik hammadde fiyatı ve Euro/Dolar paritesi modele bağımsız değişkenler olarak dahil edilmiştir. Talep tahmin modellerinin geliştirilmesinde en ilgili özelliklerin belirlenebilmesi amacıyla 6 farklı nitelik seçimi yöntemi uygulanmıştır. Modeller 3 farklı makine öğrenmesi algoritması ile eğitilmiştir. Geliştirilen modeller çelik sektöründe faaliyet gösteren bir firmanın 4 ürününün 89 aylık verileri üzerinde uygulanmıştır. Deneysel sonuçlara göre, nitelik seçimi yöntemlerinin genel olarak tahmin modellerinin performansını arttırdığı sonucuna ulaşılmasına rağmen, her bir ürün için en uygun tahmin performansını gösteren nitelik kümesi ve talep tahmini yöntemi kombinasyonunun farklılık gösterdiği değerlendirilmiştir. Geliştirilen modeller sayesinde ürünler için sırasıyla %93.6, %94.7, %90.3 ve %91.5 tahmin doğruluğu değerine ulaşılmıştır.

References

  • Acı, M. ve Doğansoy, G. A. 2022. Makine öğrenmesi ve derin öğrenme yöntemleri kullanılarak e-perakende sektörüne yönelik talep tahmini. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 37(3), 1325-1340.
  • Aydın, M. R. ve Yazıcıoğlu, O. 2019. Yapay Sinir Ağları ile Talep Tahmini: Perakende Sektöründe Bir Uygulama. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 18(35), 43-55.
  • Bansal, P., Vanjani, A., Mehta, A., Kavitha, J. C. ve Kumar, S. 2022. Improving the classification accuracy of melanoma detection by performing feature selection using binary Harris hawks optimization algorithm. Soft Computing, 26(17), 8163-8181.
  • Catal, C., Kaan, E. C. E., Arslan, B. ve Akbulut, A. 2019. Benchmarking of regression algorithms and time series analysis techniques for sales forecasting. Balkan Journal of Electrical and Computer Engineering, 7(1), 20-26.
  • Chidroop, I. ve Moharir, M. 2020. Predicting the Propensity of Order Cancellation in the Ecommerce Domain. International Journal of Research in Engineering, Science and Management, 3(6). s. 658-664.
  • Chicco, D., Warrens, M. J., ve Jurman, G. 2021. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science, 7.
  • Diren, D. D., Boran, S., ve Cil, I. 2020. Integration of machine learning techniques and control charts in multivariate processes. Scientia Iranica, 27(6), 3233- 3241.
  • El Filali, A., El Filali, S. ve Jadli, A. 2022. Application of Deep Learning in the Supply Chain Management: A comparison of forecasting demand for electrical products using different ANN methods. In 2022 International Conference on Electrical, Computer and Energy Technologies (ICECET) (pp. 1-7).
  • Elgamal, Z. M., Yasin, N. B. M., Tubishat, M., Alswaitti, M., ve Mirjalili, S. 2020. An improved harris hawks optimization algorithm with simulated annealing for feature selection in the medical field. IEEE access, 8, 186638-186652.
  • Fanoodi, B., Malmir, B. ve Jahantigh, F. F. 2019. Reducing demand uncertainty in the platelet supply chain through artificial neural networks and ARIMA models. Computers in biology and medicine, 113, 103415.
  • Feizabadi, J. 2022. Machine learning demand forecasting and supply chain performance. International Journal of Logistics Research and Applications, 25(2), 119-142.
  • Gökler, S. H. 2020. Kan Bankalarında Talep Tahmini ve Stokastik Stok Yönetimi. Doktora Tezi, Sakarya Üniversitesi.
  • Güven, İ. 2020. Perakende Hazır Giyim Endüstrisinde Yapay Zeka Yöntemleri ile Talep Tahmini. Doktora Tezi, Karabük Üniversitesi.
  • Han, G., Sönmez, E. F., Avcı, S. ve Aladağ, Z. 2022. Uygun Normalizasyon Tekniği ve Yapay Sinir Ağları Analizi ile Otomobil Satış Tahminlemesi. İşletme Ekonomi ve Yönetim Araştırmaları Dergisi, 5(1), 19-45.
  • Heidari, A. A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M. ve Chen, H. 2019. Harris hawks optimization: Algorithm and applications. Future generation computer systems, 97, 849-872.
  • Huyen, C. 2022. Designing machine learning systems. O'Reilly Media.
  • Ismael, O. M., Qasim, O. S. ve Algamal, Z. Y. 2021. A new adaptive algorithm for v-support vector regression with feature selection using Harris hawks optimization algorithm. In Journal of Physics: Conference Series (Vol. 1897, No. 1, p. 012057). IOP Publishing.
  • İmece, S. ve Beyca, Ö. F. 2022. Demand Forecasting with Integration of Time Series and Regression Models in Pharmaceutical Industry. International Journal of Advances in Engineering and Pure Sciences, 34(3), 415-425.
  • Kacar, İ. 2024. Makine Öğrenimi Kullanarak Bir Mekanik Jiroskobun Yalpalama Tahmininde Zaman Serisi Modeli. Journal of Intelligent Systems: Theory and Applications, 7(1), 14-26.
  • Kennedy, J. 2010. Particle swarm optimization. In: Encyclopedia of Machine Learning, 760–766.
  • Keung, K. L., Lee, C. K. ve Yiu, Y. H. 2021. A machine learning predictive model for shipment delay and demand forecasting for warehouses and sales data. In 2021 ieee international conference on industrial engineering and engineering management (ieem).1010-1014. IEEE.
  • Kochak, A. ve Sharma, S. 2015. Demand forecasting using neural network for supply chain management. International journal of mechanical engineering and robotics research, 4(1), 96-104.
  • Korkut, D. 2019. Yapay sinir ağları yöntemi ile talep tahmini ve ayakkabı sektörüne uygulaması. Yayımlanmamış Yüksek Lisans Tezi., Hacı Bayram Veli Üniversitesi.
  • KS, S. R. ve Murugan, S. 2017. Memory based hybrid dragonfly algorithm for numerical optimization problems. Expert Systems with Applications, 83, 63-78.
  • Kück, M. ve Freitag, M. 2021. Forecasting of customer demands for production planning by local k-nearest neighbor models. International Journal of Production Economics, 231, 107837.
  • Lazzeri, F. 2020. Machine learning for time series forecasting with Python. John Wiley & Sons.
  • Lee, H. L., V. Padmanabhan ve S. Whang. 1997. “Information Distortion in a Supply Chain: the Bullwhip Effect.” Management Science 43: 546–558.
  • LightGBM. 2023, LightGBM Regressor, Erişim Tarihi:20.12.2023. https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMRegressor.html
  • Lingireddy, S. ve Ormsbee, L. E. 2002. Hydraulic network calibration using genetic optimization. Civil Engineering and Environmental Systems, 19(1), 13-39.
  • Merkuryeva, G., Valberga, A. ve Smirnov, A. 2019. Demand forecasting in pharmaceutical supply chains: A case study. Procedia Computer Science, 149, 3-10.
  • Mirjalili, S.; Mirjalili, S.M. ve Lewis, A. 2014. Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61.
  • Mohammed, M., El-Shafie, H. ve Munir, M. 2023. Development and Validation of Innovative Machine Learning Models for Predicting Date Palm Mite Infestation on Fruits. Agronomy, 13(2), 494.
  • Mohan, B. A., Harshavardhan, B., Karan, S., Shariff, M. J. ve Pranav, M. G. 2021. Demand forecasting and route optimization in supply chain industry using data Analytics. In 2021 Asian Conference on Innovation in Technology (ASIANCON). 1-7. IEEE.
  • Muraina, I. 2022. Ideal dataset splitting ratios in machine learning algorithms: general concerns for data scientists and data analysts. In 7th International Mardin Artuklu Scientific Research Conference (pp. 496-504).
  • Orzechowski, A., Lugosch, L., Shu, H., Yang, R., Li, W. ve Meyer, B. H. 2023. A data-driven framework for medium-term electric vehicle charging demand forecasting. Energy and AI, 14, 100267.
  • Özçelik, T. Ö., Kibar, A. ve Bal, M.E., 2021. Sosyal Medyadan Veri Çekme Örnekleri. Mühendislikte Yapay Zeka ve Uygulamaları 4, Ed. Gülseçen, S., İnal, M.M., Torkul, O., Uçar, M.K., Sakarya Üniversitesi Yayınları, 79-101.
  • Poli, R., Kennedy, J. ve Blackwell, T. 2007. Particle swarm optimization: An overview. Swarm intelligence, 1, 33-57.
  • Sauro, J. ve Lewis, J. R. 2016. Quantifying the user experience: Practical statistics for user research. Morgan Kaufmann.
  • Spiliotis, E. 2022. Decision trees for time-series forecasting. Foresight, 1, 30-44.
  • Xu, S. ve Wang, S. 2022. Tourism Demand Prediction Model Using Particle Swarm Algorithm and Neural Network in Big Data Environment. Journal of Environmental and Public Health, 2022.
  • Tan, C. W., Dempster, A., Bergmeir, C. ve Webb, G. I. 2022. MultiRocket: multiple pooling operators and transformations for fast and effective time series classification. Data Mining and Knowledge Discovery, 36(5), 1623-1646.
  • Tavukçu, A. S. ve Sennaroğlu, B. 2021. Applying Forecasting Methods to Reduce the Cost of Spare Parts Inventory in a Company. Endüstri Mühendisliği, 32(3), 396-413.
  • Thaher, T., ve Arman, N. 2020. Efficient multi-swarm binary harris hawks optimization as a feature selection approach for software fault prediction. In 2020 11th International conference on information and communication systems (ICICS). 249-254. IEEE.
  • Thawkar, S. 2022. Feature selection and classification in mammography using hybrid crow search algorithm with Harris hawks optimization. Biocybernetics and Biomedical Engineering, 42(4), 1094-1111.
  • Torun, Z. ve DESTE, M. 2021. Sağlık İşletmelerinde Malzeme Yönetiminde Uygun Talep Tahmin Yönteminin Belirlenmesine Yönelik Bir Uygulama. 19 Mayıs Sosyal Bilimler Dergisi, 2(3), 581-613.
  • Türk, E. ve Kiani, F. Yapay Sinir Ağları ile Talep Tahmini Yapma: Beyaz Eşya Üretim Planlama Örneği. İstanbul Sabahattin Zaim Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 1(1), 30-37.
  • Yadav, A. ve Deep, K. 2013. Constrained optimization using gravitational search algorithm. National Academy Science Letters, 36, 527-534.
  • Yani, L. P. E., ve Aamer, A. 2023. Demand forecasting accuracy in the pharmaceutical supply chain: a machine learning approach. International Journal of Pharmaceutical and Healthcare Marketing, 17(1), 1-23.
  • Yaşar, H., Çağıl, G., Torkul, O. ve Şişci, M. 2021. Cylinder pressure prediction of an HCCI engine using deep learning. Chinese Journal of Mechanical Engineering, 34, 1-8.
  • Zeng, D., Chen, L., Zhao, S., Ou, J., Yuan, H. ve Wu, T. 2022. An Optimized Grey Wolf Algorithm. In 2022 IEEE International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC). 200-205. IEEE.
There are 50 citations in total.

Details

Primary Language Turkish
Subjects Machine Learning (Other), Industrial Engineering
Journal Section Research Articles
Authors

Orhan Torkul 0000-0003-2690-7228

Erhan Kor 0000-0002-2676-1743

Merve Şişci 0000-0001-7449-3571

Publication Date September 26, 2024
Submission Date January 29, 2024
Acceptance Date April 18, 2024
Published in Issue Year 2024 Volume: 7 Issue: 2

Cite

APA Torkul, O., Kor, E., & Şişci, M. (2024). Tedarik Zincirinde Hibrit Talep Tahmin Modeli Önerisi: Çelik Sektörü Uygulaması. Journal of Intelligent Systems: Theory and Applications, 7(2), 66-80. https://doi.org/10.38016/jista.1427938
AMA Torkul O, Kor E, Şişci M. Tedarik Zincirinde Hibrit Talep Tahmin Modeli Önerisi: Çelik Sektörü Uygulaması. JISTA. September 2024;7(2):66-80. doi:10.38016/jista.1427938
Chicago Torkul, Orhan, Erhan Kor, and Merve Şişci. “Tedarik Zincirinde Hibrit Talep Tahmin Modeli Önerisi: Çelik Sektörü Uygulaması”. Journal of Intelligent Systems: Theory and Applications 7, no. 2 (September 2024): 66-80. https://doi.org/10.38016/jista.1427938.
EndNote Torkul O, Kor E, Şişci M (September 1, 2024) Tedarik Zincirinde Hibrit Talep Tahmin Modeli Önerisi: Çelik Sektörü Uygulaması. Journal of Intelligent Systems: Theory and Applications 7 2 66–80.
IEEE O. Torkul, E. Kor, and M. Şişci, “Tedarik Zincirinde Hibrit Talep Tahmin Modeli Önerisi: Çelik Sektörü Uygulaması”, JISTA, vol. 7, no. 2, pp. 66–80, 2024, doi: 10.38016/jista.1427938.
ISNAD Torkul, Orhan et al. “Tedarik Zincirinde Hibrit Talep Tahmin Modeli Önerisi: Çelik Sektörü Uygulaması”. Journal of Intelligent Systems: Theory and Applications 7/2 (September 2024), 66-80. https://doi.org/10.38016/jista.1427938.
JAMA Torkul O, Kor E, Şişci M. Tedarik Zincirinde Hibrit Talep Tahmin Modeli Önerisi: Çelik Sektörü Uygulaması. JISTA. 2024;7:66–80.
MLA Torkul, Orhan et al. “Tedarik Zincirinde Hibrit Talep Tahmin Modeli Önerisi: Çelik Sektörü Uygulaması”. Journal of Intelligent Systems: Theory and Applications, vol. 7, no. 2, 2024, pp. 66-80, doi:10.38016/jista.1427938.
Vancouver Torkul O, Kor E, Şişci M. Tedarik Zincirinde Hibrit Talep Tahmin Modeli Önerisi: Çelik Sektörü Uygulaması. JISTA. 2024;7(2):66-80.

Journal of Intelligent Systems: Theory and Applications