Research Article
BibTex RIS Cite

Restoran Müşteri Yorumlarının Duygu Analizi: Sıfır-Atış Metin Sınıflandırma Yaklaşımı

Year 2025, Volume: 8 Issue: 1, 47 - 62, 18.03.2025
https://doi.org/10.38016/jista.1543187

Abstract

Bu makale, restoranlara yapılan çevrimiçi müşteri yorumlarından yararlanarak müşteri memnuniyetini değerlendirmek ve artırmak amacıyla makine öğrenmesi ve doğal dil işleme temelli bir yöntem önermektedir. Araştırma, çoğunluğu İzmir Körfezi çevresinde yer alan ilçelerdeki 89 balık restoranına odaklanmakta olup, veri seti 2013-2023 yılları arasında yapılan, 43 farklı dili içeren yaklaşık 15.000 müşteri yorumundan oluşmaktadır. Bu kapsamda, çalışmada hedef tabanlı duygu analizi kullanılarak, yemek kalitesi, servis kalitesi, fiziksel çevre ve adil fiyat restoran kalite boyutları temel alınarak sıfır-atış metin sınıflandırma yöntemiyle müşteri yorumlarının analiz edilmesi amaçlanmaktadır. Model değerlendirme metrikleri ümit verici sonuçlar vermekte olup, her sınıf için %75-%88 arası doğruluk ve %72-%88 arası F1 puanı elde edilmiştir. Önerilen yöntem, restoran yöneticilerinin müşteri yorumlarını otomatik olarak farklı kalite boyutlarında değerlendirmesine, restoranın güçlü ve zayıf yönlerini belirlemesine, zaman içinde müşteri memnuniyetindeki değişimleri izlemesine, rakip restoranlarla performans karşılaştırması yapmasına ve Türkçe ile yabancı dildeki müşteri yorumlarını birlikte veya ayrı ayrı analiz etmesine olanak tanımaktadır. Çalışmada önerilen bu yaklaşım, restoran yöneticilerine müşteri beklentilerini daha derinlemesine anlama ve restoran kalitesini iyileştirme konusunda veri analizi odaklı bir yol haritası sunmaktadır.

References

  • Abdullah, M., Waheed, S., Hossain, S., 2023. Sentiment analysis of restaurant reviews using machine learning. Fourth International Conference on Trends in Computational and Cognitive Engineering: TCCE 2022, 17–18 December 2022, Tangail, Bangladesh, pp. 419–428.
  • Ahmed, M., Chen, Q., Li, Z., 2020. Constructing domain-dependent sentiment dictionary for sentiment analysis. Neural Computing & Applications, 32(18), 14719–14732.
  • Akgündüz, Y., Koba, Y., Alkan, C., 2017. Yerel halkın bakış açısıyla İzmir’in gastronomi turizmi değerleri ve gelişme potansiyeli. Aydın gastronomy, 8(1), 169–186.
  • Akyurt Kurnaz, H., 2024. Gastronomi rehberliği. Anatolia: Turizm araştırmaları dergisi, 35(1), 129–132.
  • Altıntaş, V., Hazarhun, E., 2020. İzmir’in gastronomi turizmi potansiyeline turist rehberlerinin bakış açıları. International journal of applied economic and finance studies, 5(2), 13-36.
  • Ara, J., Hasan, Md. T., Al Omar, A., Bhuiyan, H., 2020. Understanding customer sentiment: Lexical analysis of restaurant reviews. 2020 IEEE Region 10 Symposium (TENSYMP), 5-7 June 2020, Dhaka, Bangladesh, pp. 295-299.
  • Azunre, P., 2021. Transfer learning for natural language processing. Manning, New York.
  • Bansal, A., Sikka, K., Sharma, G., Chellappa, R., Divakaran, A., 2018. Zero-shot object detection. ECCV 2018, 15th European Conference, 8-14 September 2018, Munich, Germany, pp. 397–414.
  • Bengül, S., Dinç, T. E., 2023. Marka deneyimi ile müşteri sadakati arasındaki ilişkinin kanonik korelasyon analizi ile incelenmesi, yiyecek içecek işletmeleri üzerinde bir uygulama. Pazarlama ve pazarlama araştırmaları dergisi, 16(2), 421-450.
  • Bozkurt, A. H., Yalçın, N., 2024. Topluluk öğrenmesi algoritmaları kullanarak Amazon yemek yorumları üzerine duygu analizi. Bilecik Şeyh Edebali Üniversitesi fen bilimleri dergisi, 11(1), 128–139.
  • Branco, A., Parada, D., Silva, M., Mendonça, F., Mostafa, S. S., Morgado-Dias, F., 2024. Sentiment analysis in Portuguese restaurant reviews: Application of transformer models in edge computing. Electronics, 13(3), 589.
  • Brattoli, B., Tighe, J., Zhdanov, F., Perona, P., Chalupka, K., 2020. Rethinking zero-shot video classification: End-to-end training for realistic applications. Conference on Computer Vision and Pattern Recognition (CVPR), 13-19 June 2020, Seattle, WA, USA, pp. 4612-4622.
  • Carrasco, P., Dias, S., 2023. Exploring natural language processing and sentence embeddings for sentiment analysis of online restaurant reviews. Atas da 23ª Conferência da Associação Portuguesa de Sistemas de Informação, 19-21 October 2023, Peja, Portugal.
  • Carrasco, P., Dias, S., 2024. Enhancing restaurant management through aspect-based sentiment analysis and NLP techniques. Procedia computer science, 237, 129–137.
  • Chang, M-W., Ratinov, L., Roth, D., Srikumar, V., 2008. Importance of semantic representation: dataless classification. 23rd National Conference on Artificial Intelligence – Volume 2, 13–17 July 2008, Chicago Illinois, pp. 830–835.
  • Cherapanukorn, V., Sugunnasil, P., 2022. Tourist attraction satisfaction factors from online reviews. A case study of tourist attractions in Thailand. Journal of environmental management and tourism, 13(2), 379.
  • Chifu, A.-G., Fournier, S., 2023. Sentiment difficulty in aspect-based sentiment analysis. Mathematics, 11(22), 4647.
  • Choi, K., Ko, Y., 2023. Meta-learning with topic-agnostic representations for zero-shot stance detection. Pattern recognition letters, 171, 15–20.
  • Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G., Guzmán, F., Grave, E., Ott, M., Zettlemoyer, L., Stoyanov, V., 2020. Unsupervised cross-lingual representation learning at scale. 58th Annual Meeting of the Association for Computational Linguistics, July 2020, Online, pp. 8440-8451.
  • Çelik, E., Dalyan, T., 2023. Unified benchmark for zero-shot Turkish text classification. Information processing & management, 60(3), 103298.
  • Das, S., Deb, N., Chaki, N., Cortesi, A., 2023. Driving the technology value stream by analyzing app reviews. IEEE transactions on software engineering, 49(7), 3753–3770.
  • Erdoğan, S., Özdemir, G., 2018. İzmir destinasyonunda gastronomi turizmi üzerine bir araştırma. Journal of tourism and gastronomy studies, 10(3), 249–272.
  • Estevam, V., Pedrini, H., Menotti, D., 2021. Zero-shot action recognition in videos: A survey. Neurocomputing, 439, 159–175.
  • Gagić, S., Tešanović, D., Jovičić, A., 2013. The vital components of restaurant quality that affect guest satisfaction. Turizam, 17(4), 166–176.
  • Gallego, V., 2023. (5 Haziran 2024) XLM-RoBERTa-large-XNLI-ANLI. https://huggingface.co/vicgalle/xlm-roberta-large-xnli-anli
  • Gedif, B., Alemu, A., Assefa, Y., Nibret, S., 2023. Design amharic text sentiment analysis model using machine learning techniques. In case of restaurant reviews. 2023 International Conference on Information and Communication Technology for Development for Africa (ICT4DA), 26-28 October 2023, Bahir Dar, Ethiopia, pp. 150–154.
  • Goodwin, T. R., Savery, M. E., Demner-Fushman, D., 2020. Towards zero-shot conditional summarization with adaptive multi-task fine-tuning. Findings of the Association for Computational Linguistics: EMNLP 2020, 16-20 November 2020, Online, pp. 3215–3226.
  • Hall, C.M., Sharples, L., Mitchell, R., Macionis, N., Cambourne, B. (Eds.), 2003. Food tourism around the world. Butterworth-Heinemann, Oxford.
  • Henrickson, K., Rodrigues, F., Pereira, F. C., 2019. Data preparation. C. Antoniou, L. Dimitriou, F. Pereira (Eds.), Mobility patterns, big data and transport analytics pp. 73–106, Elsevier, Amsterdam.
  • Hoang, M., Bihorac, O. A., Rouces, J., 2019. Aspect-based sentiment analysis using BERT. 22nd Nordic Conference on Computational Linguistics, 30 September – 2 October 2019, Turku, Finland, pp. 187–196.
  • Hoppe, F., Dessi, D., Sack, H., 2021. Understanding class representations: An intrinsic evaluation of zero-shot text classification. Workshop on Deep Learning for Knowledge Graphs (DL4KG@ISWC2021), 25 October, Online.
  • Hossain, E., Sharif, O., Hoque, M. M., Sarker, I. H., 2021. SentiLSTM: A deep learning approach for sentiment analysis of restaurant reviews. 20th International Conference on Hybrid Intelligent Systems (HIS 2020), 14-16 December, Online, pp. 193–203.
  • Hossain, N., Bhuiyan, M. R., Tumpa, Z. N., Hossain, S. A., 2020. Sentiment analysis of restaurant reviews using combined CNN-LSTM. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), 1-3 July 2020, Kharagpur, India.
  • Hugging Face, 2024. Pipelines. (10 Temmuz 2024) https://huggingface.co/docs/transformers/main_classes/pipelines
  • Iram, S., Vialatte, F.-B., Qamar, M. I., 2016. Early diagnosis of neurodegenerative diseases from gait discrimination to neural synchronization. D. Al-Jumeily, A. Hussain, C. Mallucci, C. Oliver (Eds.), Applied computing in medicine and health (pp. 1–26). Elsevier, Waltham.
  • Jiang, Q., Chen, L., Xu, R., Ao, X., Yang, M., 2019. A challenge dataset and effective models for aspect-based sentiment analysis. 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), 3-7 November 2019, Hong Kong, China, pp. 6280–6285.
  • Jiang, Y., Gao, J., Shen, H., Cheng, X., 2023. Zero-shot stance detection via multi-perspective contrastive learning with unlabeled data. Information processing & management, 60(4), 103361.
  • Jiao, Q., 2023. A brief survey of text classification methods. 2023 IEEE 3rd International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA), 26-28 May 2023, Chongqing, China, pp. 1384-1389.
  • Johnson, M., Schuster, M., Le, Q. V., Krikun, M., Wu, Y., Chen, Z., Thorat, N., Viégas, F., Wattenberg, M., Corrado, G., Hughes, M., Dean, J., 2017. Google’s multilingual neural machine translation system: Enabling zero-shot translation. Transactions of the Association for Computational Linguistics, 5, 339–351.
  • Jurafsky, D., Chahuneau, V., Routledge, B. R., Smith, N. A., 2014. Narrative framing of consumer sentiment in online restaurant reviews. First Monday, 19(4).
  • Kar, A., Dhara, S. K., Sen, D., Biswas, P. K., 2021. Zero-shot single image restoration through controlled perturbation of Koschmieder’s model. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 20-25 June 2021, Nashville, TN, USA, pp. 16200-16210.
  • Khakhar, P., Dubey, R. K., 2022. The integrity of machine learning algorithms against software defect prediction. R. Pandey, S. K. Khatri, N. K. Singh, P. Verma (Eds.), Artificial Intelligence and Machine Learning for EDGE Computing, (pp. 65–74). Elsevier, London.
  • Krishna, A., Akhilesh, V., Aich, A., Hegde, C., 2019. Sentiment analysis of restaurant reviews using machine learning techniques. International Conference, ICERECT 2018, 23-24 August 2018, Mandya, India, pp. 687–696.
  • Kukanja, M., Gomezelj Omerzel, D., Kodrič, B., 2017. Ensuring restaurant quality and guests’ loyalty: An integrative model based on marketing (7P) approach. Total quality management & business excellence, 28(13–14), 1509–1525.
  • Kulkarni, A., Chong, D., Batarseh, F. A., 2020. Foundations of data imbalance and solutions for a data democracy. F. A. Batarseh, R. Yang (Eds.), Data Democracy (pp. 83–106). Elsevier, London.
  • Kumar, A., Albuquerque, V. H. C., 2021. Sentiment analysis using XLM-R transformer and zero-shot transfer learning on resource-poor Indian language. ACM transactions on Asian and low-resource language information processing, 20(5), 1–13.
  • Kumar, J., Konar, R., Balasubramanian, K., 2020. The impact of social media on consumers’ purchasing behaviour in Malaysian restaurants. Journal of tourism, sustainability and well-being, 8(3), 197-216.
  • Küçükkömürler, S., Şırvan, N. B., Sezgin, A. C., 2019. Dünyada ve Türkiye’de gastronomi turizmi. Uluslararası turizm ekonomi ve işletme bilimleri dergisi, 2(2), 78-85.
  • Lampert, C. H., Nickisch, H., Harmeling, S., 2014. Attribute-based classification for zero-shot visual object categorization. IEEE transactions on pattern analysis and machine intelligence, 36(3), 453-465.
  • Lavanya, B. N., Shenoy, P. D., Venugopal, K. R., 2023. Sentiment analysis of social media reviews using machine learning and word embedding techniques. 2023 IEEE 4th Annual Flagship India Council International Subsections Conference (INDISCON), 5-7 August 2023, Mysore, India.
  • Leburu-Dingalo, T., Ntwaagae, K. J., Motlogelwa, N. P., Thuma, E., Mudongo, M., 2022. Application of XLM-RoBERTa for multi-class classification of conversational hate speech. FIRE 2022 Working Notes, 9-13 December 2022, Kolkata, India, pp 590-595.
  • Lepkowska-White, E., Parsons, A., 2019. Strategies for monitoring social media for small restaurants. Journal of Foodservice Business research, 22(4), 351–374.
  • Li, Y., Zhu, Z., Yu, J.-G., Zhang, Y., 2021. Learning deep cross-modal embedding networks for zero-shot remote sensing image scene classification. IEEE transactions on geoscience and remote sensing, 59(12), 10590–10603.
  • Liu, B., Li, X., Lee, W S., Yu, P. S., 2004. Text classification by labeling words. 19th national conference on artificial intelligence (AAAI'04), 25-29 July 2004, San Jose, California, USA, pp. 425–430.
  • Liu, C., Fang, F., Lin, X., Cai, T., Tan, X., Liu, J., Lu, X., 2021. Improving sentiment analysis accuracy with emoji embedding. Journal of safety science and resilience, 2(4), 246–252.
  • Liu, H., Zhang, X., Fan, L., Fu, X., Li, Q., Wu, X.-M., Lam, A. Y. S., 2019. Reconstructing capsule networks for zero-shot intent classification. 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), 3-7 November 2019, Hong Kong, China, pp. 4799–4809.
  • Logeswaran, L., Chang, M.-W., Lee, K., Toutanova, K., Devlin, J., Lee, H., 2019. Zero-shot entity linking by reading entity descriptions. 57th Annual Meeting of the Association for Computational Linguistics, 28 July – 2 August 2019, Florence, Italy, pp. 3449–3460.
  • Mahapatra, D., Bozorgtabar, B., Ge, Z., 2021. Medical image classification using generalized zero shot learning. 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), 11-17 October 2021, Montreal, BC, Canada, pp. 3337-3346.
  • Manias, G., Mavrogiorgou, A., Kiourtis, A., Symvoulidis, C., Kyriazis, D., 2023. Multilingual text categorization and sentiment analysis: A comparative analysis of the utilization of multilingual approaches for classifying twitter data. Neural computing & applications, 35, 21415–21431.
  • Masarifoglu, M., Tigrak, U., Hakyemez, S., Gul, G., Bozan, E., Buyuklu, A. H., Özgür, A., 2021. Bankacılık alanında müşteri yorumlarının BERT tabanlı yaklaşımlar ile duygu analizi. 2021 29th Signal Processing and Communications Applications Conference (SIU), 9-11 June, Istanbul, Turkey.
  • McInerney, D. J., Young, G., van de Meent, J.-W., Wallace, B. C., 2023. (15 Temmuz 2024). CHiLL: Zero-shot custom interpretable feature extraction from clinical notes with large language models. https://arxiv.org/abs/2302.12343
  • Mohammad, S. M., 2017. Challenges in sentiment analysis. E. Cambria, D. Das, S. Bandyopadhyay, A. Feraco (Eds.), A practical guide to sentiment analysis (pp. 61–83), Springer, Cham.
  • Nankani, H., Dutta, H., Shrivastava, H., Rama Krishna, P. V. N. S., Mahata, D., Shah, R. R., 2020. Multilingual sentiment analysis, B. Agarwal, R. Nayak, N. Mittal, S. Patnaik (Eds.), Deep learning-based approaches for sentiment analysis (pp. 193–236). Springer, Singapore.
  • Pang, B., Lee, L., 2008. Opinion mining and sentiment analysis. Foundations and trends® in information retrieval, 2(1–2), 1–135.
  • Patil, D. R., Shukla, D., Kumar, A., Rajanak, Y., Pratap Singh, Y., 2022. Machine learning for sentiment analysis and classification of restaurant reviews. 2022 3rd International Conference on Computing, Analytics and Networks (ICAN), 18-19 November 2022, Rajpura, Punjab, India.
  • Pérez, J. M., Furman, D. A., Alemany, L. A., Luque, F. M., 2022. RoBERTuito: A pre-trained language model for social media text in Spanish. Thirteenth Language Resources and Evaluation Conference, 20-25 June 2022, Marseille, France, pp. 7235–7243.
  • Pourpanah, F., Abdar, M., Luo, Y., Zhou, X., Wang, R., Lim, C. P., Lim, C. P., X-Z., Wang, Wu, Q. M. J., 2023). A review of generalized zero-shot learning methods. IEEE transactions on pattern analysis and machine intelligence, 45(4), 4051–4070.
  • Pradhan, B., Al-Najjar, H. A. H., Sameen, M. I., Tsang, I., Alamri, A. M., 2020. Unseen land cover classification from high-resolution orthophotos using integration of zero-shot learning and convolutional neural networks. Remote Sensing, 12(10), 1676.
  • Quazi, S., Musa, S. M., 2022. Text classification and categorization through deep learning. 2022 14th International Conference on Computational Intelligence and Communication Networks (CICN), 4-6 December 2022, Al-Khobar, Saudi Arabia, pp. 513-519.
  • Revathi, K. L., Satish, A. R., Rao, P. S., 2023. Feature level fine grained sentiment analysis for classifying online restaurant reviews. 2023 Second International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT), 5-7 April 2023, Trichirappalli, India.
  • Rey-Moreno, M., Sánchez-Franco, M. J., Rey-Tienda, M. D. la S., 2023. Examining transaction-specific satisfaction and trust in Airbnb and hotels. An application of BERTopic and zero-shot text classification. Tourism & management studies, 19(2), 21-37.
  • Rezaei, M., Shahidi, M., 2020. Zero-shot learning and its applications from autonomous vehicles to COVID-19 diagnosis: A review. Intelligence-based medicine, 3(100005), 100005.
  • Romera-Paredes, B., Torr, P. H. S., 2017. An embarrassingly simple approach to zero-shot learning. R. S. Feris, R. S., C. Lampert, D. Parikh (Eds.), Visual attributes (pp. 11–30). Springer, Cham.
  • Sahar, A., Ayoub, M., Hussain, S., Yu, Y., Khan, A., 2022. Transfer learning-based framework for sentiment classification of cosmetics products reviews. Pakistan journal of engineering and technology, 5(3), 38–43.
  • Sanghi, A., Chu, H., Lambourne, J. G., Wang, Y., Cheng, C.-Y., Fumero, M., Malekshan, K. R., 2022. CLIP-forge: Towards zero-shot text-to-shape generation. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 18-24 June 2022, New Orleans, LA, USA, pp. 18582-18592.
  • Soleymani, M., Garcia, D., Jou, B., Schuller, B., Chang, S.-F., Pantic, M., 2017. A survey of multimodal sentiment analysis. Image and vision computing, 65, 3–14.
  • Suciati, A., Budi, I., 2019. Aspect-based opinion mining for code-mixed restaurant reviews in Indonesia. 2019 International Conference on Asian Language Processing (IALP), 15-17 November 2019, Shanghai, China, pp. 59–64.
  • Thompson, B., Post, M., 2020. Automatic machine translation evaluation in many languages via zero-shot paraphrasing. 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), 16-20 November 2020, Online, pp. 90–121.
  • Tuna, M. F., Polatgı̇l, M., Kaynar, O., 2023. Restoran müşterilerinin geri bildirimleri üzerinde hedef kategorinin tespiti ve hedef tabanlı duygu analizi. Süleyman Demirel Üniversitesi vizyoner dergisi, 14(40), 1205–1221.
  • Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., Polosukhin, I., 2017. Attention is all you need. 31st International Conference on Neural Information Processing Systems (NIPS 2017), 4-9 December 2017, Long Beach, CA, USA.
  • Vétil, R., Abi-Nader, C., Bône, A., Vullierme, M.-P., Rohé, M.-M., Gori, P., Bloch, I., 2022. Learning shape distributions from large databases of healthy organs: Applications to zero-shot and few-shot abnormal pancreas detection. Medical Image Computing and Computer Assisted Intervention – MICCAI 2022: 25th International Conference, 18-22 September 2022, Singapore, Singapore, pp. 464–473.
  • Wang, W., Zheng, V. W., Yu, H., Miao, C., 2019. A survey of zero-shot learning. ACM transactions on intelligent systems and technology, 10(2), 1–37.
  • Yentür, F., Demı̇r, C., 2022). The current perceptions of travel agencies in Izmir about gastronomy tourism and their actual gastronomic tourism offers. Journal of gastronomy hospitality and travel, 5(1), 238-249.
  • Yi, S., Zhao, J., Joung, H.-W. (david), 2018. Influence of price and brand image on restaurant customers’ restaurant selection attribute. Journal of foodservice business research, 21(2), 200–217.
  • Yu, L., Feng, Q., Qian, Y., Liu, W., Hauptmann, A. G., 2020, June 14-19). Zero-VIRUS: Zero-shot vehicle route understanding system for intelligent transportation. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 14-19 June, 2020, Seattle, WA, USA, pp. 2534-2543.
  • Yüksekbilgili, Z., 2015. Restoran seçim ölçütleri üzerine bir araştırma. Journal of Yaşar University, 9(36), 6453-6360.
  • Zahoor, K., Bawany, N. Z., Hamid, S., 2020. Sentiment analysis and classification of restaurant reviews using machine learning. 2020 21st International Arab Conference on Information Technology (ACIT), 28-30 November 2020, Giza. Egypt.
  • Zhan, C., She, D., Zhao, S., Cheng, M.-M., Yang, J., 2019. Zero-shot emotion recognition via affective structural embedding. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 27 October-2 November 2019, Seoul, Korea (South), pp. 1151-1160.
  • Zhang, B., Williams, P., Titov, I., Sennrich, R., 2020. Improving massively multilingual neural machine translation and zero-shot translation. 58th Annual Meeting of the Association for Computational Linguistics, 5-10 July 2020, Online, pp. 1628–1639.
  • Zhang, S., Ly, L., Mach, N., Amaya, C., 2022. Topic modeling and sentiment analysis of Yelp restaurant reviews. International journal of information systems in the service sector, 14(1), 1–16.
  • Zheng, S., Gupta, G., 2022. Semantic-guided zero-shot learning for low-light image/video enhancement. 2022 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops (WACVW), 4-8 January 2022, Waikoloa, HI, USA, pp. 581-590.

Sentiment Analysis of Restaurant Customer Reviews: A Zero-Shot Text Classification Approach

Year 2025, Volume: 8 Issue: 1, 47 - 62, 18.03.2025
https://doi.org/10.38016/jista.1543187

Abstract

This paper proposes a machine learning and natural language processing-based method to evaluate and increase customer satisfaction by using online customer reviews of restaurants. The research focuses on 89 fish restaurants, mostly located in the districts around Gulf of Izmir, and the dataset consists of approximately 15,000 customer reviews written between 2013 and 2023, covering 43 different languages. In this context, the study aims to analyse customer reviews using target-based sentiment analysis using zero-shot text classification method based on restaurant quality dimensions of food quality, service quality, physical environment, and fair price. Model evaluation metrics give promising results, with accuracy between 75% and 88% and F1 score between 72% and 88% for each class. The proposed method allows restaurant managers to automatically evaluate customer reviews on different quality dimensions, identify restaurant strengths and weaknesses, monitor changes in customer satisfaction over time, compare performance with competitor restaurants, and analyse Turkish and foreign language customer reviews together or separately. This approach proposed in the study provides restaurant managers with a data analysis-focused roadmap to understand customer expectations more deeply and improve restaurant quality.

References

  • Abdullah, M., Waheed, S., Hossain, S., 2023. Sentiment analysis of restaurant reviews using machine learning. Fourth International Conference on Trends in Computational and Cognitive Engineering: TCCE 2022, 17–18 December 2022, Tangail, Bangladesh, pp. 419–428.
  • Ahmed, M., Chen, Q., Li, Z., 2020. Constructing domain-dependent sentiment dictionary for sentiment analysis. Neural Computing & Applications, 32(18), 14719–14732.
  • Akgündüz, Y., Koba, Y., Alkan, C., 2017. Yerel halkın bakış açısıyla İzmir’in gastronomi turizmi değerleri ve gelişme potansiyeli. Aydın gastronomy, 8(1), 169–186.
  • Akyurt Kurnaz, H., 2024. Gastronomi rehberliği. Anatolia: Turizm araştırmaları dergisi, 35(1), 129–132.
  • Altıntaş, V., Hazarhun, E., 2020. İzmir’in gastronomi turizmi potansiyeline turist rehberlerinin bakış açıları. International journal of applied economic and finance studies, 5(2), 13-36.
  • Ara, J., Hasan, Md. T., Al Omar, A., Bhuiyan, H., 2020. Understanding customer sentiment: Lexical analysis of restaurant reviews. 2020 IEEE Region 10 Symposium (TENSYMP), 5-7 June 2020, Dhaka, Bangladesh, pp. 295-299.
  • Azunre, P., 2021. Transfer learning for natural language processing. Manning, New York.
  • Bansal, A., Sikka, K., Sharma, G., Chellappa, R., Divakaran, A., 2018. Zero-shot object detection. ECCV 2018, 15th European Conference, 8-14 September 2018, Munich, Germany, pp. 397–414.
  • Bengül, S., Dinç, T. E., 2023. Marka deneyimi ile müşteri sadakati arasındaki ilişkinin kanonik korelasyon analizi ile incelenmesi, yiyecek içecek işletmeleri üzerinde bir uygulama. Pazarlama ve pazarlama araştırmaları dergisi, 16(2), 421-450.
  • Bozkurt, A. H., Yalçın, N., 2024. Topluluk öğrenmesi algoritmaları kullanarak Amazon yemek yorumları üzerine duygu analizi. Bilecik Şeyh Edebali Üniversitesi fen bilimleri dergisi, 11(1), 128–139.
  • Branco, A., Parada, D., Silva, M., Mendonça, F., Mostafa, S. S., Morgado-Dias, F., 2024. Sentiment analysis in Portuguese restaurant reviews: Application of transformer models in edge computing. Electronics, 13(3), 589.
  • Brattoli, B., Tighe, J., Zhdanov, F., Perona, P., Chalupka, K., 2020. Rethinking zero-shot video classification: End-to-end training for realistic applications. Conference on Computer Vision and Pattern Recognition (CVPR), 13-19 June 2020, Seattle, WA, USA, pp. 4612-4622.
  • Carrasco, P., Dias, S., 2023. Exploring natural language processing and sentence embeddings for sentiment analysis of online restaurant reviews. Atas da 23ª Conferência da Associação Portuguesa de Sistemas de Informação, 19-21 October 2023, Peja, Portugal.
  • Carrasco, P., Dias, S., 2024. Enhancing restaurant management through aspect-based sentiment analysis and NLP techniques. Procedia computer science, 237, 129–137.
  • Chang, M-W., Ratinov, L., Roth, D., Srikumar, V., 2008. Importance of semantic representation: dataless classification. 23rd National Conference on Artificial Intelligence – Volume 2, 13–17 July 2008, Chicago Illinois, pp. 830–835.
  • Cherapanukorn, V., Sugunnasil, P., 2022. Tourist attraction satisfaction factors from online reviews. A case study of tourist attractions in Thailand. Journal of environmental management and tourism, 13(2), 379.
  • Chifu, A.-G., Fournier, S., 2023. Sentiment difficulty in aspect-based sentiment analysis. Mathematics, 11(22), 4647.
  • Choi, K., Ko, Y., 2023. Meta-learning with topic-agnostic representations for zero-shot stance detection. Pattern recognition letters, 171, 15–20.
  • Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G., Guzmán, F., Grave, E., Ott, M., Zettlemoyer, L., Stoyanov, V., 2020. Unsupervised cross-lingual representation learning at scale. 58th Annual Meeting of the Association for Computational Linguistics, July 2020, Online, pp. 8440-8451.
  • Çelik, E., Dalyan, T., 2023. Unified benchmark for zero-shot Turkish text classification. Information processing & management, 60(3), 103298.
  • Das, S., Deb, N., Chaki, N., Cortesi, A., 2023. Driving the technology value stream by analyzing app reviews. IEEE transactions on software engineering, 49(7), 3753–3770.
  • Erdoğan, S., Özdemir, G., 2018. İzmir destinasyonunda gastronomi turizmi üzerine bir araştırma. Journal of tourism and gastronomy studies, 10(3), 249–272.
  • Estevam, V., Pedrini, H., Menotti, D., 2021. Zero-shot action recognition in videos: A survey. Neurocomputing, 439, 159–175.
  • Gagić, S., Tešanović, D., Jovičić, A., 2013. The vital components of restaurant quality that affect guest satisfaction. Turizam, 17(4), 166–176.
  • Gallego, V., 2023. (5 Haziran 2024) XLM-RoBERTa-large-XNLI-ANLI. https://huggingface.co/vicgalle/xlm-roberta-large-xnli-anli
  • Gedif, B., Alemu, A., Assefa, Y., Nibret, S., 2023. Design amharic text sentiment analysis model using machine learning techniques. In case of restaurant reviews. 2023 International Conference on Information and Communication Technology for Development for Africa (ICT4DA), 26-28 October 2023, Bahir Dar, Ethiopia, pp. 150–154.
  • Goodwin, T. R., Savery, M. E., Demner-Fushman, D., 2020. Towards zero-shot conditional summarization with adaptive multi-task fine-tuning. Findings of the Association for Computational Linguistics: EMNLP 2020, 16-20 November 2020, Online, pp. 3215–3226.
  • Hall, C.M., Sharples, L., Mitchell, R., Macionis, N., Cambourne, B. (Eds.), 2003. Food tourism around the world. Butterworth-Heinemann, Oxford.
  • Henrickson, K., Rodrigues, F., Pereira, F. C., 2019. Data preparation. C. Antoniou, L. Dimitriou, F. Pereira (Eds.), Mobility patterns, big data and transport analytics pp. 73–106, Elsevier, Amsterdam.
  • Hoang, M., Bihorac, O. A., Rouces, J., 2019. Aspect-based sentiment analysis using BERT. 22nd Nordic Conference on Computational Linguistics, 30 September – 2 October 2019, Turku, Finland, pp. 187–196.
  • Hoppe, F., Dessi, D., Sack, H., 2021. Understanding class representations: An intrinsic evaluation of zero-shot text classification. Workshop on Deep Learning for Knowledge Graphs (DL4KG@ISWC2021), 25 October, Online.
  • Hossain, E., Sharif, O., Hoque, M. M., Sarker, I. H., 2021. SentiLSTM: A deep learning approach for sentiment analysis of restaurant reviews. 20th International Conference on Hybrid Intelligent Systems (HIS 2020), 14-16 December, Online, pp. 193–203.
  • Hossain, N., Bhuiyan, M. R., Tumpa, Z. N., Hossain, S. A., 2020. Sentiment analysis of restaurant reviews using combined CNN-LSTM. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), 1-3 July 2020, Kharagpur, India.
  • Hugging Face, 2024. Pipelines. (10 Temmuz 2024) https://huggingface.co/docs/transformers/main_classes/pipelines
  • Iram, S., Vialatte, F.-B., Qamar, M. I., 2016. Early diagnosis of neurodegenerative diseases from gait discrimination to neural synchronization. D. Al-Jumeily, A. Hussain, C. Mallucci, C. Oliver (Eds.), Applied computing in medicine and health (pp. 1–26). Elsevier, Waltham.
  • Jiang, Q., Chen, L., Xu, R., Ao, X., Yang, M., 2019. A challenge dataset and effective models for aspect-based sentiment analysis. 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), 3-7 November 2019, Hong Kong, China, pp. 6280–6285.
  • Jiang, Y., Gao, J., Shen, H., Cheng, X., 2023. Zero-shot stance detection via multi-perspective contrastive learning with unlabeled data. Information processing & management, 60(4), 103361.
  • Jiao, Q., 2023. A brief survey of text classification methods. 2023 IEEE 3rd International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA), 26-28 May 2023, Chongqing, China, pp. 1384-1389.
  • Johnson, M., Schuster, M., Le, Q. V., Krikun, M., Wu, Y., Chen, Z., Thorat, N., Viégas, F., Wattenberg, M., Corrado, G., Hughes, M., Dean, J., 2017. Google’s multilingual neural machine translation system: Enabling zero-shot translation. Transactions of the Association for Computational Linguistics, 5, 339–351.
  • Jurafsky, D., Chahuneau, V., Routledge, B. R., Smith, N. A., 2014. Narrative framing of consumer sentiment in online restaurant reviews. First Monday, 19(4).
  • Kar, A., Dhara, S. K., Sen, D., Biswas, P. K., 2021. Zero-shot single image restoration through controlled perturbation of Koschmieder’s model. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 20-25 June 2021, Nashville, TN, USA, pp. 16200-16210.
  • Khakhar, P., Dubey, R. K., 2022. The integrity of machine learning algorithms against software defect prediction. R. Pandey, S. K. Khatri, N. K. Singh, P. Verma (Eds.), Artificial Intelligence and Machine Learning for EDGE Computing, (pp. 65–74). Elsevier, London.
  • Krishna, A., Akhilesh, V., Aich, A., Hegde, C., 2019. Sentiment analysis of restaurant reviews using machine learning techniques. International Conference, ICERECT 2018, 23-24 August 2018, Mandya, India, pp. 687–696.
  • Kukanja, M., Gomezelj Omerzel, D., Kodrič, B., 2017. Ensuring restaurant quality and guests’ loyalty: An integrative model based on marketing (7P) approach. Total quality management & business excellence, 28(13–14), 1509–1525.
  • Kulkarni, A., Chong, D., Batarseh, F. A., 2020. Foundations of data imbalance and solutions for a data democracy. F. A. Batarseh, R. Yang (Eds.), Data Democracy (pp. 83–106). Elsevier, London.
  • Kumar, A., Albuquerque, V. H. C., 2021. Sentiment analysis using XLM-R transformer and zero-shot transfer learning on resource-poor Indian language. ACM transactions on Asian and low-resource language information processing, 20(5), 1–13.
  • Kumar, J., Konar, R., Balasubramanian, K., 2020. The impact of social media on consumers’ purchasing behaviour in Malaysian restaurants. Journal of tourism, sustainability and well-being, 8(3), 197-216.
  • Küçükkömürler, S., Şırvan, N. B., Sezgin, A. C., 2019. Dünyada ve Türkiye’de gastronomi turizmi. Uluslararası turizm ekonomi ve işletme bilimleri dergisi, 2(2), 78-85.
  • Lampert, C. H., Nickisch, H., Harmeling, S., 2014. Attribute-based classification for zero-shot visual object categorization. IEEE transactions on pattern analysis and machine intelligence, 36(3), 453-465.
  • Lavanya, B. N., Shenoy, P. D., Venugopal, K. R., 2023. Sentiment analysis of social media reviews using machine learning and word embedding techniques. 2023 IEEE 4th Annual Flagship India Council International Subsections Conference (INDISCON), 5-7 August 2023, Mysore, India.
  • Leburu-Dingalo, T., Ntwaagae, K. J., Motlogelwa, N. P., Thuma, E., Mudongo, M., 2022. Application of XLM-RoBERTa for multi-class classification of conversational hate speech. FIRE 2022 Working Notes, 9-13 December 2022, Kolkata, India, pp 590-595.
  • Lepkowska-White, E., Parsons, A., 2019. Strategies for monitoring social media for small restaurants. Journal of Foodservice Business research, 22(4), 351–374.
  • Li, Y., Zhu, Z., Yu, J.-G., Zhang, Y., 2021. Learning deep cross-modal embedding networks for zero-shot remote sensing image scene classification. IEEE transactions on geoscience and remote sensing, 59(12), 10590–10603.
  • Liu, B., Li, X., Lee, W S., Yu, P. S., 2004. Text classification by labeling words. 19th national conference on artificial intelligence (AAAI'04), 25-29 July 2004, San Jose, California, USA, pp. 425–430.
  • Liu, C., Fang, F., Lin, X., Cai, T., Tan, X., Liu, J., Lu, X., 2021. Improving sentiment analysis accuracy with emoji embedding. Journal of safety science and resilience, 2(4), 246–252.
  • Liu, H., Zhang, X., Fan, L., Fu, X., Li, Q., Wu, X.-M., Lam, A. Y. S., 2019. Reconstructing capsule networks for zero-shot intent classification. 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), 3-7 November 2019, Hong Kong, China, pp. 4799–4809.
  • Logeswaran, L., Chang, M.-W., Lee, K., Toutanova, K., Devlin, J., Lee, H., 2019. Zero-shot entity linking by reading entity descriptions. 57th Annual Meeting of the Association for Computational Linguistics, 28 July – 2 August 2019, Florence, Italy, pp. 3449–3460.
  • Mahapatra, D., Bozorgtabar, B., Ge, Z., 2021. Medical image classification using generalized zero shot learning. 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), 11-17 October 2021, Montreal, BC, Canada, pp. 3337-3346.
  • Manias, G., Mavrogiorgou, A., Kiourtis, A., Symvoulidis, C., Kyriazis, D., 2023. Multilingual text categorization and sentiment analysis: A comparative analysis of the utilization of multilingual approaches for classifying twitter data. Neural computing & applications, 35, 21415–21431.
  • Masarifoglu, M., Tigrak, U., Hakyemez, S., Gul, G., Bozan, E., Buyuklu, A. H., Özgür, A., 2021. Bankacılık alanında müşteri yorumlarının BERT tabanlı yaklaşımlar ile duygu analizi. 2021 29th Signal Processing and Communications Applications Conference (SIU), 9-11 June, Istanbul, Turkey.
  • McInerney, D. J., Young, G., van de Meent, J.-W., Wallace, B. C., 2023. (15 Temmuz 2024). CHiLL: Zero-shot custom interpretable feature extraction from clinical notes with large language models. https://arxiv.org/abs/2302.12343
  • Mohammad, S. M., 2017. Challenges in sentiment analysis. E. Cambria, D. Das, S. Bandyopadhyay, A. Feraco (Eds.), A practical guide to sentiment analysis (pp. 61–83), Springer, Cham.
  • Nankani, H., Dutta, H., Shrivastava, H., Rama Krishna, P. V. N. S., Mahata, D., Shah, R. R., 2020. Multilingual sentiment analysis, B. Agarwal, R. Nayak, N. Mittal, S. Patnaik (Eds.), Deep learning-based approaches for sentiment analysis (pp. 193–236). Springer, Singapore.
  • Pang, B., Lee, L., 2008. Opinion mining and sentiment analysis. Foundations and trends® in information retrieval, 2(1–2), 1–135.
  • Patil, D. R., Shukla, D., Kumar, A., Rajanak, Y., Pratap Singh, Y., 2022. Machine learning for sentiment analysis and classification of restaurant reviews. 2022 3rd International Conference on Computing, Analytics and Networks (ICAN), 18-19 November 2022, Rajpura, Punjab, India.
  • Pérez, J. M., Furman, D. A., Alemany, L. A., Luque, F. M., 2022. RoBERTuito: A pre-trained language model for social media text in Spanish. Thirteenth Language Resources and Evaluation Conference, 20-25 June 2022, Marseille, France, pp. 7235–7243.
  • Pourpanah, F., Abdar, M., Luo, Y., Zhou, X., Wang, R., Lim, C. P., Lim, C. P., X-Z., Wang, Wu, Q. M. J., 2023). A review of generalized zero-shot learning methods. IEEE transactions on pattern analysis and machine intelligence, 45(4), 4051–4070.
  • Pradhan, B., Al-Najjar, H. A. H., Sameen, M. I., Tsang, I., Alamri, A. M., 2020. Unseen land cover classification from high-resolution orthophotos using integration of zero-shot learning and convolutional neural networks. Remote Sensing, 12(10), 1676.
  • Quazi, S., Musa, S. M., 2022. Text classification and categorization through deep learning. 2022 14th International Conference on Computational Intelligence and Communication Networks (CICN), 4-6 December 2022, Al-Khobar, Saudi Arabia, pp. 513-519.
  • Revathi, K. L., Satish, A. R., Rao, P. S., 2023. Feature level fine grained sentiment analysis for classifying online restaurant reviews. 2023 Second International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT), 5-7 April 2023, Trichirappalli, India.
  • Rey-Moreno, M., Sánchez-Franco, M. J., Rey-Tienda, M. D. la S., 2023. Examining transaction-specific satisfaction and trust in Airbnb and hotels. An application of BERTopic and zero-shot text classification. Tourism & management studies, 19(2), 21-37.
  • Rezaei, M., Shahidi, M., 2020. Zero-shot learning and its applications from autonomous vehicles to COVID-19 diagnosis: A review. Intelligence-based medicine, 3(100005), 100005.
  • Romera-Paredes, B., Torr, P. H. S., 2017. An embarrassingly simple approach to zero-shot learning. R. S. Feris, R. S., C. Lampert, D. Parikh (Eds.), Visual attributes (pp. 11–30). Springer, Cham.
  • Sahar, A., Ayoub, M., Hussain, S., Yu, Y., Khan, A., 2022. Transfer learning-based framework for sentiment classification of cosmetics products reviews. Pakistan journal of engineering and technology, 5(3), 38–43.
  • Sanghi, A., Chu, H., Lambourne, J. G., Wang, Y., Cheng, C.-Y., Fumero, M., Malekshan, K. R., 2022. CLIP-forge: Towards zero-shot text-to-shape generation. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 18-24 June 2022, New Orleans, LA, USA, pp. 18582-18592.
  • Soleymani, M., Garcia, D., Jou, B., Schuller, B., Chang, S.-F., Pantic, M., 2017. A survey of multimodal sentiment analysis. Image and vision computing, 65, 3–14.
  • Suciati, A., Budi, I., 2019. Aspect-based opinion mining for code-mixed restaurant reviews in Indonesia. 2019 International Conference on Asian Language Processing (IALP), 15-17 November 2019, Shanghai, China, pp. 59–64.
  • Thompson, B., Post, M., 2020. Automatic machine translation evaluation in many languages via zero-shot paraphrasing. 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), 16-20 November 2020, Online, pp. 90–121.
  • Tuna, M. F., Polatgı̇l, M., Kaynar, O., 2023. Restoran müşterilerinin geri bildirimleri üzerinde hedef kategorinin tespiti ve hedef tabanlı duygu analizi. Süleyman Demirel Üniversitesi vizyoner dergisi, 14(40), 1205–1221.
  • Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., Polosukhin, I., 2017. Attention is all you need. 31st International Conference on Neural Information Processing Systems (NIPS 2017), 4-9 December 2017, Long Beach, CA, USA.
  • Vétil, R., Abi-Nader, C., Bône, A., Vullierme, M.-P., Rohé, M.-M., Gori, P., Bloch, I., 2022. Learning shape distributions from large databases of healthy organs: Applications to zero-shot and few-shot abnormal pancreas detection. Medical Image Computing and Computer Assisted Intervention – MICCAI 2022: 25th International Conference, 18-22 September 2022, Singapore, Singapore, pp. 464–473.
  • Wang, W., Zheng, V. W., Yu, H., Miao, C., 2019. A survey of zero-shot learning. ACM transactions on intelligent systems and technology, 10(2), 1–37.
  • Yentür, F., Demı̇r, C., 2022). The current perceptions of travel agencies in Izmir about gastronomy tourism and their actual gastronomic tourism offers. Journal of gastronomy hospitality and travel, 5(1), 238-249.
  • Yi, S., Zhao, J., Joung, H.-W. (david), 2018. Influence of price and brand image on restaurant customers’ restaurant selection attribute. Journal of foodservice business research, 21(2), 200–217.
  • Yu, L., Feng, Q., Qian, Y., Liu, W., Hauptmann, A. G., 2020, June 14-19). Zero-VIRUS: Zero-shot vehicle route understanding system for intelligent transportation. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 14-19 June, 2020, Seattle, WA, USA, pp. 2534-2543.
  • Yüksekbilgili, Z., 2015. Restoran seçim ölçütleri üzerine bir araştırma. Journal of Yaşar University, 9(36), 6453-6360.
  • Zahoor, K., Bawany, N. Z., Hamid, S., 2020. Sentiment analysis and classification of restaurant reviews using machine learning. 2020 21st International Arab Conference on Information Technology (ACIT), 28-30 November 2020, Giza. Egypt.
  • Zhan, C., She, D., Zhao, S., Cheng, M.-M., Yang, J., 2019. Zero-shot emotion recognition via affective structural embedding. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 27 October-2 November 2019, Seoul, Korea (South), pp. 1151-1160.
  • Zhang, B., Williams, P., Titov, I., Sennrich, R., 2020. Improving massively multilingual neural machine translation and zero-shot translation. 58th Annual Meeting of the Association for Computational Linguistics, 5-10 July 2020, Online, pp. 1628–1639.
  • Zhang, S., Ly, L., Mach, N., Amaya, C., 2022. Topic modeling and sentiment analysis of Yelp restaurant reviews. International journal of information systems in the service sector, 14(1), 1–16.
  • Zheng, S., Gupta, G., 2022. Semantic-guided zero-shot learning for low-light image/video enhancement. 2022 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops (WACVW), 4-8 January 2022, Waikoloa, HI, USA, pp. 581-590.
There are 91 citations in total.

Details

Primary Language Turkish
Subjects Natural Language Processing
Journal Section Research Articles
Authors

Kutan Koruyan 0000-0002-3115-5676

Early Pub Date March 13, 2025
Publication Date March 18, 2025
Submission Date September 3, 2024
Acceptance Date February 4, 2025
Published in Issue Year 2025 Volume: 8 Issue: 1

Cite

APA Koruyan, K. (2025). Restoran Müşteri Yorumlarının Duygu Analizi: Sıfır-Atış Metin Sınıflandırma Yaklaşımı. Journal of Intelligent Systems: Theory and Applications, 8(1), 47-62. https://doi.org/10.38016/jista.1543187
AMA Koruyan K. Restoran Müşteri Yorumlarının Duygu Analizi: Sıfır-Atış Metin Sınıflandırma Yaklaşımı. JISTA. March 2025;8(1):47-62. doi:10.38016/jista.1543187
Chicago Koruyan, Kutan. “Restoran Müşteri Yorumlarının Duygu Analizi: Sıfır-Atış Metin Sınıflandırma Yaklaşımı”. Journal of Intelligent Systems: Theory and Applications 8, no. 1 (March 2025): 47-62. https://doi.org/10.38016/jista.1543187.
EndNote Koruyan K (March 1, 2025) Restoran Müşteri Yorumlarının Duygu Analizi: Sıfır-Atış Metin Sınıflandırma Yaklaşımı. Journal of Intelligent Systems: Theory and Applications 8 1 47–62.
IEEE K. Koruyan, “Restoran Müşteri Yorumlarının Duygu Analizi: Sıfır-Atış Metin Sınıflandırma Yaklaşımı”, JISTA, vol. 8, no. 1, pp. 47–62, 2025, doi: 10.38016/jista.1543187.
ISNAD Koruyan, Kutan. “Restoran Müşteri Yorumlarının Duygu Analizi: Sıfır-Atış Metin Sınıflandırma Yaklaşımı”. Journal of Intelligent Systems: Theory and Applications 8/1 (March 2025), 47-62. https://doi.org/10.38016/jista.1543187.
JAMA Koruyan K. Restoran Müşteri Yorumlarının Duygu Analizi: Sıfır-Atış Metin Sınıflandırma Yaklaşımı. JISTA. 2025;8:47–62.
MLA Koruyan, Kutan. “Restoran Müşteri Yorumlarının Duygu Analizi: Sıfır-Atış Metin Sınıflandırma Yaklaşımı”. Journal of Intelligent Systems: Theory and Applications, vol. 8, no. 1, 2025, pp. 47-62, doi:10.38016/jista.1543187.
Vancouver Koruyan K. Restoran Müşteri Yorumlarının Duygu Analizi: Sıfır-Atış Metin Sınıflandırma Yaklaşımı. JISTA. 2025;8(1):47-62.

Journal of Intelligent Systems: Theory and Applications