Research Article
BibTex RIS Cite
Year 2022, , 29 - 33, 31.12.2022
https://doi.org/10.53635/jit.1192375

Abstract

References

  • Lu, X. (1997). On polymer modified road bitumens [Doctoral Dissertation]. Stockholm: KTH Royal Institute of Technology.
  • Alataş, T., & Yilmaz, M. (2013). Effects of different polymers on mechanical properties of bituminous binders and hot mixtures. Construction and Building Materials, 42, 161-167. https://doi.org/10.1016/j.conbuildmat.2013.01.027
  • Becker, M. Y., Muller, A. J., & Rodriguez, Y. (2003). Use of rheological compatibility criteria to study SBS modified asphalts. Journal of Applied Polymer Science, 90(7), 1772-1782. https://www.cheric.org/research/tech/periodicals/doi.php?art_seq=434731
  • Chen, J. S., Liao, M. C., & Tsai, H. H. (2002). Evaluation and optimization of the engineering properties of polymer-modified asphalt. Practical Failure Analysis, 2(3), 75-83. https://doi.org/10.1007/BF02719194
  • Isacsson, U., & Zeng, H. (1998). Low-temperature cracking of polymer-modified asphalt. Materials and Structures, 31(1), 58-63. https://doi.org/10.1007/BF02486415
  • Larsen, D. O., Alessandrini, J. L., Bosch, A., & Cortizo, M. S. (2009). Micro-structural and rheological characteristics of SBS-asphalt blends during their manufacturing. Construction and Building Materials, 23(8), 2769-2774. https://doi.org/10.1016/j.conbuildmat.2009.03.008
  • Polacco, G., Berlincioni, S., Biondi, D., Stastna, J., & Zanzotto, L. (2005). Asphalt modification with different polyethylene-based polymers. European polymer journal, 41(12), 2831-2844. https://doi.org/10.1016/j.eurpolymj.2005.05.034
  • Collins, J. H., Bouldin, M. G., Gelles, R., & Berker, A. (1991). Improved performance of paving asphalts by polymer modification (with discussion). Journal of the Association of Asphalt Paving Technologists, 60.
  • Lu, X., & Isacsson, U. (2000). Modification of road bitumens with thermoplastic polymers. Polymer testing, 20(1), 77-86. https://doi.org/10.1016/S0142-9418(00)00004-0
  • Sengoz, B., & Isikyakar, G. (2008). Evaluation of the properties and microstructure of SBS and EVA polymer modified bitumen. Construction and Building Materials, 22(9), 1897-1905. https://doi.org/10.1016/j.conbuildmat.2007.07.013
  • Zhu, J., Birgisson, B., & Kringos, N. (2014). Polymer modification of bitumen: Advances and challenges. European Polymer Journal, 54, 18-38. https://doi.org/10.1016/j.eurpolymj.2014.02.005
  • Hernández, G., Medina, E. M., Sánchez, R., & Mendoza, A. M. (2006). Thermomechanical and rheological asphalt modification using styrene− butadiene triblock copolymers with different microstructure. Energy & fuels, 20(6), 2623-2626. https://doi.org/10.1021/ef050393t
  • Masson, J. F., Collins, P., Robertson, G., Woods, J. R., & Margeson, J. (2003). Thermodynamics, phase diagrams, and stability of bitumen− polymer blends. Energy & Fuels, 17(3), 714-724. https://doi.org/10.1021/ef0202687
  • Hou, Y., Wang, L., Wang, D., Guo, M., Liu, P., & Yu, J. (2017). Characterization of bitumen micro-mechanical behaviors using AFM, phase dynamics theory and MD simulation. Materials, 10(2), 208. https://doi.org/10.3390/ma10020208
  • Allen, R. G., Little, D. N., Bhasin, A., & Glover, C. J. (2014). The effects of chemical composition on asphalt microstructure and their association to pavement performance. International Journal of Pavement Engineering, 15(1), 9-22. https://doi.org/10.1080/10298436.2013.836192
  • Lyne, Å. L., Wallqvist, V., & Birgisson, B. (2013). Adhesive surface characteristics of bitumen binders investigated by atomic force microscopy. Fuel, 113, 248-256. https://doi.org/10.1016/j.fuel.2013.05.042
  • Yu, X., Burnham, N. A., Mallick, R. B., & Tao, M. (2013). A systematic AFM-based method to measure adhesion differences between micron-sized domains in asphalt binders. Fuel, 113, 443-447. https://doi.org/10.1016/j.fuel.2013.05.084
  • Masson, J. F., Leblond, V., & Margeson, J. (2006). Bitumen morphologies by phase‐detection atomic force microscopy. Journal of microscopy, 221(1), 17-29. https://doi.org/10.1111/j.1365-2818.2006.01540.x
  • Hung, A. M., & Fini, E. H. (2015). AFM study of asphalt binder “bee” structures: Origin, mechanical fracture, topological evolution, and experimental artifacts. Rsc Advances, 5(117), 96972-96982. https://doi.org/10.1039/C5RA13982A
  • Ortega, F. J., Roman, C., Navarro, F. J., García-Morales, M., & McNally, T. (2016). Physico-chemistry control of the linear viscoelastic behaviour of bitumen/montmorillonite/MDI ternary composites: effect of the modification sequence. Fuel Processing Technology, 143, 195-203. https://doi.org/10.1016/j.fuproc.2015.11.011
  • Loeber, L., Muller, G., Morel, J., & Sutton, O. (1998). Bitumen in colloid science: a chemical, structural and rheological approach. Fuel, 77(13), 1443-1450. https://doi.org/10.1016/S0016-2361(98)00054-4
  • Kaya Ozdemir, D., Topal, A., & McNally, T. (2021). Relationship between microstructure and phase morphology of SBS modified bitumen with processing parameters studied using atomic force microscopy. Construction and Building Materials, 268, 121061. https://doi.org/10.1016/j.conbuildmat.2020.121061
  • Aghazadeh Dokandari, P., Topal, A., & Kaya Ozdemir, D. (2021). Rheological and microstructural investigation of the effects of rejuvenators on reclaimed asphalt pavement bitumen by DSR and AFM. International Journal of Civil Engineering, 19(7), 749-758. https://doi.org/10.1007/s40999-021-00605-z
  • Handle, F., Füssl, J., Neudl, S., Grossegger, D., Eberhardsteiner, L., Hofko, B., Hospodka, M., Blab, R. & Grothe, H. (2016). The bitumen microstructure: a fluorescent approach. Materials and Structures, 49(1), 167-180. https://doi.org/10.1617/s11527-014-0484-3
  • Bearsley, S., Forbes, A., & G. HAVERKAMP, R. (2004). Direct observation of the asphaltene structure in paving‐grade bitumen using confocal laser‐scanning microscopy. Journal of microscopy, 215(2), 149-155. https://doi.org/10.1111/j.0022-2720.2004.01373.x
  • Kaya, D., Topal, A., & McNally, T. (2019). Correlation of processing parameters and ageing with the phase morphology of styrene-butadiene-styrene block co-polymer modified bitumen. Materials Research Express, 6(10), 105309. https://doi.org/10.1088/2053-1591/ab349c
  • Ozdemir, D. K. (2020). Stiren-Butadiyen-Stiren İçeriğinin Bitümün Kırılmış Yüzey Morfolojisine Etkilerinin İncelenmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 32(2), 549-559. https://doi.org/10.35234/fumbd.685691
  • Yan, C., Lv, Q., Zhang, A. A., Ai, C., Huang, W., & Ren, D. (2022). Modeling the modulus of bitumen/sbs composite at different temperatures based on kinetic models. Composites Science and Technology, 218, 109146. https://doi.org/10.1016/j.compscitech.2021.109146

Morphological investigation of SBS modified bitumen by innovative microscopies: AFM and CLSM

Year 2022, , 29 - 33, 31.12.2022
https://doi.org/10.53635/jit.1192375

Abstract

Styrene-Butadiene-Styrene (SBS) is one of the most commonly used copolymer in the PMB production. SBS modification results in different material characteristics on the neat bitumen depending on the SBS type and of course the amount of the SBS used in the modification. Within the scope of this study, morphological characterisation of SBS modified samples involving different amount of SBS copolymer (4%, 5% and 6%) were examined by using innovative microscopies as AFM and CLSM. The topographic and phase properties of the PMB samples were obtained by using AFM and the dispersion and interaction of SBS copolymer with the bitumen were interpreted based on the images obtained by CLSM. As a result it was concluded that, the amount of the copolymer used in the modification process directly effects the morphological properties of the final product (PMB).

References

  • Lu, X. (1997). On polymer modified road bitumens [Doctoral Dissertation]. Stockholm: KTH Royal Institute of Technology.
  • Alataş, T., & Yilmaz, M. (2013). Effects of different polymers on mechanical properties of bituminous binders and hot mixtures. Construction and Building Materials, 42, 161-167. https://doi.org/10.1016/j.conbuildmat.2013.01.027
  • Becker, M. Y., Muller, A. J., & Rodriguez, Y. (2003). Use of rheological compatibility criteria to study SBS modified asphalts. Journal of Applied Polymer Science, 90(7), 1772-1782. https://www.cheric.org/research/tech/periodicals/doi.php?art_seq=434731
  • Chen, J. S., Liao, M. C., & Tsai, H. H. (2002). Evaluation and optimization of the engineering properties of polymer-modified asphalt. Practical Failure Analysis, 2(3), 75-83. https://doi.org/10.1007/BF02719194
  • Isacsson, U., & Zeng, H. (1998). Low-temperature cracking of polymer-modified asphalt. Materials and Structures, 31(1), 58-63. https://doi.org/10.1007/BF02486415
  • Larsen, D. O., Alessandrini, J. L., Bosch, A., & Cortizo, M. S. (2009). Micro-structural and rheological characteristics of SBS-asphalt blends during their manufacturing. Construction and Building Materials, 23(8), 2769-2774. https://doi.org/10.1016/j.conbuildmat.2009.03.008
  • Polacco, G., Berlincioni, S., Biondi, D., Stastna, J., & Zanzotto, L. (2005). Asphalt modification with different polyethylene-based polymers. European polymer journal, 41(12), 2831-2844. https://doi.org/10.1016/j.eurpolymj.2005.05.034
  • Collins, J. H., Bouldin, M. G., Gelles, R., & Berker, A. (1991). Improved performance of paving asphalts by polymer modification (with discussion). Journal of the Association of Asphalt Paving Technologists, 60.
  • Lu, X., & Isacsson, U. (2000). Modification of road bitumens with thermoplastic polymers. Polymer testing, 20(1), 77-86. https://doi.org/10.1016/S0142-9418(00)00004-0
  • Sengoz, B., & Isikyakar, G. (2008). Evaluation of the properties and microstructure of SBS and EVA polymer modified bitumen. Construction and Building Materials, 22(9), 1897-1905. https://doi.org/10.1016/j.conbuildmat.2007.07.013
  • Zhu, J., Birgisson, B., & Kringos, N. (2014). Polymer modification of bitumen: Advances and challenges. European Polymer Journal, 54, 18-38. https://doi.org/10.1016/j.eurpolymj.2014.02.005
  • Hernández, G., Medina, E. M., Sánchez, R., & Mendoza, A. M. (2006). Thermomechanical and rheological asphalt modification using styrene− butadiene triblock copolymers with different microstructure. Energy & fuels, 20(6), 2623-2626. https://doi.org/10.1021/ef050393t
  • Masson, J. F., Collins, P., Robertson, G., Woods, J. R., & Margeson, J. (2003). Thermodynamics, phase diagrams, and stability of bitumen− polymer blends. Energy & Fuels, 17(3), 714-724. https://doi.org/10.1021/ef0202687
  • Hou, Y., Wang, L., Wang, D., Guo, M., Liu, P., & Yu, J. (2017). Characterization of bitumen micro-mechanical behaviors using AFM, phase dynamics theory and MD simulation. Materials, 10(2), 208. https://doi.org/10.3390/ma10020208
  • Allen, R. G., Little, D. N., Bhasin, A., & Glover, C. J. (2014). The effects of chemical composition on asphalt microstructure and their association to pavement performance. International Journal of Pavement Engineering, 15(1), 9-22. https://doi.org/10.1080/10298436.2013.836192
  • Lyne, Å. L., Wallqvist, V., & Birgisson, B. (2013). Adhesive surface characteristics of bitumen binders investigated by atomic force microscopy. Fuel, 113, 248-256. https://doi.org/10.1016/j.fuel.2013.05.042
  • Yu, X., Burnham, N. A., Mallick, R. B., & Tao, M. (2013). A systematic AFM-based method to measure adhesion differences between micron-sized domains in asphalt binders. Fuel, 113, 443-447. https://doi.org/10.1016/j.fuel.2013.05.084
  • Masson, J. F., Leblond, V., & Margeson, J. (2006). Bitumen morphologies by phase‐detection atomic force microscopy. Journal of microscopy, 221(1), 17-29. https://doi.org/10.1111/j.1365-2818.2006.01540.x
  • Hung, A. M., & Fini, E. H. (2015). AFM study of asphalt binder “bee” structures: Origin, mechanical fracture, topological evolution, and experimental artifacts. Rsc Advances, 5(117), 96972-96982. https://doi.org/10.1039/C5RA13982A
  • Ortega, F. J., Roman, C., Navarro, F. J., García-Morales, M., & McNally, T. (2016). Physico-chemistry control of the linear viscoelastic behaviour of bitumen/montmorillonite/MDI ternary composites: effect of the modification sequence. Fuel Processing Technology, 143, 195-203. https://doi.org/10.1016/j.fuproc.2015.11.011
  • Loeber, L., Muller, G., Morel, J., & Sutton, O. (1998). Bitumen in colloid science: a chemical, structural and rheological approach. Fuel, 77(13), 1443-1450. https://doi.org/10.1016/S0016-2361(98)00054-4
  • Kaya Ozdemir, D., Topal, A., & McNally, T. (2021). Relationship between microstructure and phase morphology of SBS modified bitumen with processing parameters studied using atomic force microscopy. Construction and Building Materials, 268, 121061. https://doi.org/10.1016/j.conbuildmat.2020.121061
  • Aghazadeh Dokandari, P., Topal, A., & Kaya Ozdemir, D. (2021). Rheological and microstructural investigation of the effects of rejuvenators on reclaimed asphalt pavement bitumen by DSR and AFM. International Journal of Civil Engineering, 19(7), 749-758. https://doi.org/10.1007/s40999-021-00605-z
  • Handle, F., Füssl, J., Neudl, S., Grossegger, D., Eberhardsteiner, L., Hofko, B., Hospodka, M., Blab, R. & Grothe, H. (2016). The bitumen microstructure: a fluorescent approach. Materials and Structures, 49(1), 167-180. https://doi.org/10.1617/s11527-014-0484-3
  • Bearsley, S., Forbes, A., & G. HAVERKAMP, R. (2004). Direct observation of the asphaltene structure in paving‐grade bitumen using confocal laser‐scanning microscopy. Journal of microscopy, 215(2), 149-155. https://doi.org/10.1111/j.0022-2720.2004.01373.x
  • Kaya, D., Topal, A., & McNally, T. (2019). Correlation of processing parameters and ageing with the phase morphology of styrene-butadiene-styrene block co-polymer modified bitumen. Materials Research Express, 6(10), 105309. https://doi.org/10.1088/2053-1591/ab349c
  • Ozdemir, D. K. (2020). Stiren-Butadiyen-Stiren İçeriğinin Bitümün Kırılmış Yüzey Morfolojisine Etkilerinin İncelenmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 32(2), 549-559. https://doi.org/10.35234/fumbd.685691
  • Yan, C., Lv, Q., Zhang, A. A., Ai, C., Huang, W., & Ren, D. (2022). Modeling the modulus of bitumen/sbs composite at different temperatures based on kinetic models. Composites Science and Technology, 218, 109146. https://doi.org/10.1016/j.compscitech.2021.109146
There are 28 citations in total.

Details

Primary Language English
Subjects Transportation Engineering
Journal Section Research Articles
Authors

Derya Kaya Özdemir 0000-0003-1517-9405

Publication Date December 31, 2022
Submission Date October 20, 2022
Acceptance Date November 16, 2022
Published in Issue Year 2022

Cite

APA Kaya Özdemir, D. (2022). Morphological investigation of SBS modified bitumen by innovative microscopies: AFM and CLSM. Journal of Innovative Transportation, 3(2), 29-33. https://doi.org/10.53635/jit.1192375