Research Article
BibTex RIS Cite

Integrating a Connected Micromobility Infrastructure to the Existing Public Transport

Year 2023, , 184 - 193, 27.03.2023
https://doi.org/10.51513/jitsa.1148025

Abstract

This paper presents the integration of connected micromobility infrastructure into the existing public transport system. The integration purpose is to help organize the public space in the urban environment, lower operation costs for micromobility operators, and create a better Mobility-as-a-Service (MaaS) experience for citizens with the connected and universal micromobility charging infrastructure solution. Our goal is to efficiently consolidate electric-powered shared micromobility vehicles such as e-scooters and e-bikes into hubs to manage their charging and maintenance operations efficiently. Therefore, determining the locations of these e-hubs and the required charging infrastructure is paramount for satisfying the commuters' needs. We address this problem using an optimization approach and develop a model for siting and sizing micromobility e-hubs within an urban context. We formulate the problem as a mixed-integer linear programming (MILP) and develop a Variable Neighbourhood Search (VNS) metaheuristic algorithm to solve the problem. The evaluation of the performance of the solution methodology is applied using real data from Ankara Metropolitan Municipality (AMM).

Supporting Institution

Sabanci University

Project Number

MeHUB: Integrating a Connected Micromobility Infrastructure to the Existing Public Transport (2021) EIT Urban Mobility (Coordinator: B. Çatay, Partners: DUCKT, Ankara Metropolitan Municipality)

References

  • Affi, M., Derbel, H., & Jarboui, B. (2018). Variable neighborhood search algorithm for the green vehicle routing problem. International Journal of Industrial Engineering Computations, 9(2), 195-204.
  • Fishman, E., Cherry, C. (2016). E-bikes in the Mainstream: Reviewing a Decade of Research. Transport Reviews 36, 72–91,1069907.
  • Giordano, A., Fischbeck, P. and Matthews, H.S. (2018). Environmental and economic comparison of diesel and battery electric delivery vans to inform city logistics fleet replacement strategies. Transportation Research Part D: Transport and Environment, 64, 216–229.
  • Jaller, M., Pineda, L. and Ambrose, H. (2018). Evaluating the use of zero-emission vehicles in last mile deliveries. Institute of Transportation Studies, University of California, Davis, Research Report UCD-ITS-RR-18-48.
  • Mladenović, N. and Hansen, P. (1997). Variable neighborhood search. Computers & Operations Research, 24(11), 1097–1100.
  • Özger, A. (2022). Multi-depot heterogeneous fleet vehicle routing problem with time windows: Airline and roadway integrated routing. International Journal of Industrial Engineering Computations, 13(3), 435-456.
  • Pan, S., Zhou, W., Piramuthu, S., Giannikas, V. and Chen, C. (2021). Smart city for sustainable urban freight logistics. International Journal of Production Research, 59(7), 2079–2089.
  • Popovich, N., Gordon, E., Shao, Z., Xing, Y., Wang, Y., Handy, S. (2014). Experiences of electric bicycle users in the Sacramento, California area. Travel Behaviour and Society 1, 37–44.
  • Rincon-Garcia, N., Waterson, B., & Cherrett, T. (2017). A hybrid metaheuristic for the time-dependent vehicle routing problem with hard time windows. International Journal of Industrial Engineering Computations, 8(1), 141-160.
  • Sadati, M.E.H., Çatay, B. and Aksen, D. (2021). An efficient variable neighborhood search with tabu shaking for a class of multi-depot vehicle routing problems. Computers & Operations Research, 133, p.105269.
  • Sadati, M.E.H., Akbari, V. and Çatay, B. (2022). Electric vehicle routing problem with flexible deliveries. International Journal of Production Research, 60(13), pp.4268-4294.

Bağlantılı Mikromobilite Altyapısını Mevcut Toplu Taşıma Sistemine Entegrasyonu

Year 2023, , 184 - 193, 27.03.2023
https://doi.org/10.51513/jitsa.1148025

Abstract

Bu çalışma, bağlantılı mikromobilite altyapısının mevcut toplu taşıma sistemine entegrasyonunu ele almaktadır. Entegrasyonun amacı, kentsel ortamda kamusal alanın düzenlenmesine yardımcı olmak, mikromobilite operatörleri için işletme maliyetlerini düşürmek, bağlantılı ve evrensel mikromobilite şarj altyapısı çözümüyle vatandaşlar için daha iyi bir Hizmet Olarak Mobilite (MaaS) deneyimi sağlamaktır. Amacımız, şarj ve bakım işlemlerini verimli bir şekilde yönetmek için elektrikli skuter ve elektrikli bisiklet gibi elektrikle çalışan paylaşılan mikromobilite araçlarını istasyonlarda verimli bir şekilde birleştirilmesidir. Bu bağlamda, istasyonların konumlarının ve gerekli şarj altyapısının belirlenmesi, vatandaşların yolculuk ihtiyaçlarının karşılanması açısından büyük önem taşımaktadır. Çalışmada bu problemi eniyileme yaklaşımı kullanarak ele alıyoruz ve kent içindeki mikromobilite istasyonlarının konumlarının ve gereken şarj altyapısının belirlenmesi için bir karma tamsayılı doğrusal programlama modeli sunuyoruz. Daha sonra, problemin etkin çözümü için bir Değişken Komşuluk Araması yöntemi geliştiriyoruz. Geliştirilen yöntemi Ankara’ya ait veriler üzerinde uygulayarak performansını sınıyor ve elde edilen sonuçları sunuyoruz.

Project Number

MeHUB: Integrating a Connected Micromobility Infrastructure to the Existing Public Transport (2021) EIT Urban Mobility (Coordinator: B. Çatay, Partners: DUCKT, Ankara Metropolitan Municipality)

References

  • Affi, M., Derbel, H., & Jarboui, B. (2018). Variable neighborhood search algorithm for the green vehicle routing problem. International Journal of Industrial Engineering Computations, 9(2), 195-204.
  • Fishman, E., Cherry, C. (2016). E-bikes in the Mainstream: Reviewing a Decade of Research. Transport Reviews 36, 72–91,1069907.
  • Giordano, A., Fischbeck, P. and Matthews, H.S. (2018). Environmental and economic comparison of diesel and battery electric delivery vans to inform city logistics fleet replacement strategies. Transportation Research Part D: Transport and Environment, 64, 216–229.
  • Jaller, M., Pineda, L. and Ambrose, H. (2018). Evaluating the use of zero-emission vehicles in last mile deliveries. Institute of Transportation Studies, University of California, Davis, Research Report UCD-ITS-RR-18-48.
  • Mladenović, N. and Hansen, P. (1997). Variable neighborhood search. Computers & Operations Research, 24(11), 1097–1100.
  • Özger, A. (2022). Multi-depot heterogeneous fleet vehicle routing problem with time windows: Airline and roadway integrated routing. International Journal of Industrial Engineering Computations, 13(3), 435-456.
  • Pan, S., Zhou, W., Piramuthu, S., Giannikas, V. and Chen, C. (2021). Smart city for sustainable urban freight logistics. International Journal of Production Research, 59(7), 2079–2089.
  • Popovich, N., Gordon, E., Shao, Z., Xing, Y., Wang, Y., Handy, S. (2014). Experiences of electric bicycle users in the Sacramento, California area. Travel Behaviour and Society 1, 37–44.
  • Rincon-Garcia, N., Waterson, B., & Cherrett, T. (2017). A hybrid metaheuristic for the time-dependent vehicle routing problem with hard time windows. International Journal of Industrial Engineering Computations, 8(1), 141-160.
  • Sadati, M.E.H., Çatay, B. and Aksen, D. (2021). An efficient variable neighborhood search with tabu shaking for a class of multi-depot vehicle routing problems. Computers & Operations Research, 133, p.105269.
  • Sadati, M.E.H., Akbari, V. and Çatay, B. (2022). Electric vehicle routing problem with flexible deliveries. International Journal of Production Research, 60(13), pp.4268-4294.
There are 11 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

İhsan Sadati 0000-0001-6106-4903

Project Number MeHUB: Integrating a Connected Micromobility Infrastructure to the Existing Public Transport (2021) EIT Urban Mobility (Coordinator: B. Çatay, Partners: DUCKT, Ankara Metropolitan Municipality)
Publication Date March 27, 2023
Submission Date July 24, 2022
Acceptance Date February 28, 2023
Published in Issue Year 2023

Cite

APA Sadati, İ. (2023). Integrating a Connected Micromobility Infrastructure to the Existing Public Transport. Akıllı Ulaşım Sistemleri Ve Uygulamaları Dergisi, 6(1), 184-193. https://doi.org/10.51513/jitsa.1148025