Li-ion batteries are a commonly used type of battery in various electronic devices and electric vehicles. The capacity of these batteries can decrease over time and affect the lifespan of the device. Therefore, predicting the capacity status of Li-ion batteries is important, there are several ways to estimate the SOC of a battery. When the literature was reviewed and relevant articles were examined, it was observed that artificial neural networks could be an effective tool for predicting the capacity status of Li-ion batteries. In this study, a study was conducted to predict the capacity status of Li-ion batteries using artificial neural networks. For this purpose, data collection, data preprocessing, and the use of artificial neural networks were carried out in stages for the prediction of the capacity status of Li-ion batteries. When the results obtained were examined, it was seen that artificial neural networks were able to correctly predict the capacity status of Li-ion batteries. The comparative analysis among various ANN models, including RNN, LTSM, and GRU highlights the superiority of GRU in performance, with RNN exhibiting comparable performance and LSTM lagging. These predictions can be used to extend the lifespan of Li-ion batteries and optimize the performance of the device. In addition, efforts such as expanding the data set and optimizing the network structure can be made to increase the accuracy of these predictions. This research presents an exemplary study of predicting Li-ion battery capacity using ANNs and has been successfully conducted using NASA datasets.
Artificial Neural Network Li-ion Battery Battery Capacity Prediction RNN LSTM GRU State of Capacity SOC
Li-ion bataryalar, günümüzde çeşitli elektronik cihazlarda ve elektrikli araçlarda sıklıkla kullanılan batarya türlerindendir. Bu bataryaların kapasitesi zaman içinde azalabilmekte ve cihazların ömrünü etkileyebilmektedir. Bu nedenle, Li-ion bataryaların kapasite durumunun tahmin edilmesi önemlidir ve yapay sinir ağları, bu tahmini yapmada kullanılabilecek etkili bir araçtır. Çeşitli girdi verilerine dayanarak tahminler yapabilme yeteneğine sahip olan bu ağ yapısı, Li-ion bataryaların kapasite durumu tahmini yapmak için de kullanılabilmektedir. Bu çalışmada, Li-ion bataryaların kapasite durumunun yapay sinir ağları kullanarak tahmini için bir çalışma yapılmıştır. Bu amaçla, Li-ion bataryaların kapasite durumunun tahmini için veri toplama, veri ön işleme ve yapay sinir ağları kullanımı gibi aşamalar işlenmiştir. Literatür taraması yapılmış ve ilgili makaleler incelendiğinde, yapay sinir ağlarının Li-ion bataryaların kapasite durumunun tahmini için etkili bir araç olabileceği görülmüştür.
Primary Language | English |
---|---|
Subjects | Electrical Energy Storage, Electrical Engineering (Other) |
Journal Section | Articles |
Authors | |
Early Pub Date | October 18, 2024 |
Publication Date | October 22, 2024 |
Submission Date | October 24, 2023 |
Acceptance Date | April 2, 2024 |
Published in Issue | Year 2024 |