Research Article
BibTex RIS Cite

SWOT Analysis of Unmanned Surface Vehicle for Environmental Monitoring Tasks in Maritime Ports

Year 2019, Volume: 2 Issue: 1, 15 - 21, 24.04.2019

Abstract

Ports
are becoming commercial centre due to large amounts of cargo transported via commercial
shipment. These large structures, which can provide almost all the needs of the
ships traveling on the high seas from a single point, have high importance for
the region. In maritime transportation, ports serve special purposes for
merchant vessels. On the other hand, Intelligent Transport Systems became the
main target of logistic market. ITS’ primarily aim includes safe, smart and
clean mobility and as well as saving on money, time and energy. Demand of high
amounts of cargo operation causes high vessel traffic in maritime ports. For
environmental protection all these merchant vessel traffic should be monitored.
The easiest and cheapest way of continuously monitoring is unmanned or
autonomous surface vehicles. In this study, SWOT analysis of unmanned surface
vehicles is used for determining which communication sensor is suitable in
ports. RF, LTE, Bluetooth and WLAN technologies are compared in the scope of
different properties of sensors.

References

  • Ferreira, H., Almeida, C., Martins, A., Almeida, J., Dias, N., Dias, A., & Silva, E. (2009). Autonomous bathymetry for risk assessment with ROAZ robotic surface vehicle. OCEANS ’09 IEEE Bremen: Balancing Technology with Future Needs, 1–6. https://doi.org/10.1109/OCEANSE.2009.5278235
  • Horner, D. P., & Healey, A. J. (2004). Use of artificial potential fields for UAV guidance and optimization of WLAN communications. 2004 IEEE/OES Autonomous Underwater Vehicles (IEEE Cat. No.04CH37578), 88–95. https://doi.org/10.1109/AUV.2004.1431198
  • Howard, V., Mefford, J., Camilli, R., Bingham, B., & Arnold, L. (2017). The Unmanned Port Security Vessel: An autonomous platform for monitoring ports and harbors. OCEANS’11 MTS/IEEE KONA, 1–8. https://doi.org/10.23919/oceans.2011.6107217
  • Ireland, R. D., Hitt, M. A., & Sirmon, D. G. (2003). Recent research on team and organizational diversity: SWOT analysis and implications. Journal of Management, 29(6), 801–830. https://doi.org/10.1016/S0149-2063
  • Johansen, T. A., Zolich, A., Hansen, T., & Sorensen, A. J. (2014). Unmanned aerial vehicle as communication relay for autonomous underwater vehicle - Field tests. 2014 IEEE Globecom Workshops, GC Wkshps 2014, 1469–1474. https://doi.org/10.1109/GLOCOMW.2014.7063641
  • Leirens, S., & Pierquin, J. (2004). Modelling and Control of an UNMANNED SURFACE VEHICLE FOR ENVIRONMENTAL MONITORING, 81(October), 1032–1040. https://doi.org/10.1002/(SICI)1099-1239(199706)7:6<591::AID-RNC293>3.0.CO;2-M
  • Liu, Y., & Bucknall, R. (2015). Path planning algorithm for unmanned surface vehicle formations in a practical maritime environment. Ocean Engineering, 97, 126–144. https://doi.org/10.1016/j.oceaneng.2015.01.008
  • Stelzer, R., & Jafarmadar, K. (2012). The robotic sailing boat asv roboat as a maritime research platform. INNOC Austrian Society for Innovative Computer Sciences. Retrieved from http://www.hiswasymposium.com/assets/files/pdf/2012/Stelzer.pdf
  • TSUGAWA, S. (2005). Issues and Recent Trends in Vehicle Safety Communication Systems. IATSS Research, 29(1), 7–15. https://doi.org/10.1016/S0386-1112(14)60113-8
  • Zhao, Z., Liu, D., & Wang, L. (2018). Applicability Analysis of LTE in Long-distance Maritime Communication, 161(Tlicsc), 128–132.

Deniz Çevresi İzleme Amaçlı Kullanılan İnsansız Suüstü Araçların SWOT Analizi

Year 2019, Volume: 2 Issue: 1, 15 - 21, 24.04.2019

Abstract



Ticari denizcilik sayesnde yüksek
miktarda taşınan yükler ile limanlar ticaret merkezleri haline gelmektedir. Bu
büyük yapılar, tek noktadan denizlere açılan gemilerin neredeyse tüm
ihtyaçlarını karşılayabilen, bölge için büyük öneme sahiptir. Deniz taşımacılığında,
limanlar ticari gemiler için özel ihtiyaçlara hizmet etmektedir. Öte yandan
Akıllı Ulaşım Sistemleri lojistik sektörü için ana başlıklardan birisi haline
gelmiştir. AUS öncelikle güvenli, akıllı ve temiz mobiliteyi ve aynı zamanda
enerji, zaman ve para tasarruflarını hedeflemektedir. Yüksek miktarda kargo
ihtiyacı yüzünden limanlarda aşırı yoğun deniz trafiği meydana gelmektedir.
Deniz çevresinin korunabilmesi için bu yüksek miktardaki trafiğin kontrol
edilmesi gerekmektedir. Sürekli izlemenin en ucuz ve kolay yolu insansız ya da
otonom su üstü araçlardır. Bu çalışmada, limanlarda kullanılabilen deniz
çevresi izleme görevinde kullanılan insansız su üstü araçlarda kullanılan
algılayıcıların SWOT analizi yapılmıştır. RF, LTE, Bluetooth ve WLAN teknolojileri
algılayıcıların değişik özellikleri çerçevesinde karşılaştırılmıştır.




References

  • Ferreira, H., Almeida, C., Martins, A., Almeida, J., Dias, N., Dias, A., & Silva, E. (2009). Autonomous bathymetry for risk assessment with ROAZ robotic surface vehicle. OCEANS ’09 IEEE Bremen: Balancing Technology with Future Needs, 1–6. https://doi.org/10.1109/OCEANSE.2009.5278235
  • Horner, D. P., & Healey, A. J. (2004). Use of artificial potential fields for UAV guidance and optimization of WLAN communications. 2004 IEEE/OES Autonomous Underwater Vehicles (IEEE Cat. No.04CH37578), 88–95. https://doi.org/10.1109/AUV.2004.1431198
  • Howard, V., Mefford, J., Camilli, R., Bingham, B., & Arnold, L. (2017). The Unmanned Port Security Vessel: An autonomous platform for monitoring ports and harbors. OCEANS’11 MTS/IEEE KONA, 1–8. https://doi.org/10.23919/oceans.2011.6107217
  • Ireland, R. D., Hitt, M. A., & Sirmon, D. G. (2003). Recent research on team and organizational diversity: SWOT analysis and implications. Journal of Management, 29(6), 801–830. https://doi.org/10.1016/S0149-2063
  • Johansen, T. A., Zolich, A., Hansen, T., & Sorensen, A. J. (2014). Unmanned aerial vehicle as communication relay for autonomous underwater vehicle - Field tests. 2014 IEEE Globecom Workshops, GC Wkshps 2014, 1469–1474. https://doi.org/10.1109/GLOCOMW.2014.7063641
  • Leirens, S., & Pierquin, J. (2004). Modelling and Control of an UNMANNED SURFACE VEHICLE FOR ENVIRONMENTAL MONITORING, 81(October), 1032–1040. https://doi.org/10.1002/(SICI)1099-1239(199706)7:6<591::AID-RNC293>3.0.CO;2-M
  • Liu, Y., & Bucknall, R. (2015). Path planning algorithm for unmanned surface vehicle formations in a practical maritime environment. Ocean Engineering, 97, 126–144. https://doi.org/10.1016/j.oceaneng.2015.01.008
  • Stelzer, R., & Jafarmadar, K. (2012). The robotic sailing boat asv roboat as a maritime research platform. INNOC Austrian Society for Innovative Computer Sciences. Retrieved from http://www.hiswasymposium.com/assets/files/pdf/2012/Stelzer.pdf
  • TSUGAWA, S. (2005). Issues and Recent Trends in Vehicle Safety Communication Systems. IATSS Research, 29(1), 7–15. https://doi.org/10.1016/S0386-1112(14)60113-8
  • Zhao, Z., Liu, D., & Wang, L. (2018). Applicability Analysis of LTE in Long-distance Maritime Communication, 161(Tlicsc), 128–132.
There are 10 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Üstün Atak 0000-0002-1513-7371

Publication Date April 24, 2019
Submission Date March 4, 2019
Acceptance Date April 9, 2019
Published in Issue Year 2019 Volume: 2 Issue: 1

Cite

APA Atak, Ü. (2019). SWOT Analysis of Unmanned Surface Vehicle for Environmental Monitoring Tasks in Maritime Ports. Akıllı Ulaşım Sistemleri Ve Uygulamaları Dergisi, 2(1), 15-21.