Research Article
BibTex RIS Cite

Evaluation of Factors Affecting Logistics Performance in a Global Crisis Environment with DEMATEL and BWM

Year 2023, Volume: 6 Issue: 2, 300 - 325, 23.10.2023
https://doi.org/10.51513/jitsa.1261018

Abstract

One of the most important indicators of the economic welfare of the countries is the performance level of logistics activities. For this reason, the performance of logistics activities is susceptible to economic conditions. In recent years, the financial crisis environment, which has reached global dimensions due to the pandemic and war, has revealed that logistics management performances should be reevaluated. Therefore, it will be significant to reassess the critical factors that affect the logistics management performance domestically and globally at the country level. This study examined national and international critical factors impacting logistics management performance in the economic crisis environment. For this purpose, criteria determined from expert opinions and scientific literature review were evaluated by DEMATEL and BWM methods. As a result of the analysis, the factors impacting logistics performance were identified and interpreted in order of importance. The paper analyzes the factors impacting countries' logistics performance in the global economic crisis environment and presents an up-to-date evaluation.

References

  • Agility Emerging Markets Logistics Index. (2022). AEMLI-2022, Accessed: 22 December 2022, https://www.agility.com/en/emerging-markets-logistics-index/.
  • Agyekum, E. B., Kumar, N. M., Mehmood, U., Panjwani, M. K., Haes Alhelou, H., Adebayo, T. S., Al-Hinai, A. (2021). Decarbonize Russia—A Best–Worst Method approach for assessing the renewable energy potentials, opportunities and challenges. Energy Reports, 7, 4498–4515. https://doi.org/10.1016/j.egyr.2021.07.039
  • Aksakal E, Dağdeviren M. (2010). ANP ve DEMATEL yöntemleri ile personel seçimi problemine bütünleşik bir yaklaşım. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 25(4), 905-913.
  • Andrejic, M. & Kilibarda, M. (2014). Global Logistics Effıciency Index, 8th International Quality Conference, 857-862.
  • Arvis, Jean-François, Ben Shepherd, Yann Duval, and Chorthip Utoktham. (2016). Trade Costs and Development: A New Data Set. Economic Premise, January 2016, Issue 104. World Bank, Poverty Reduction and Economic Management Network, Washington, DC.
  • Banomyong, R., Thai, V.V., Yuen K.F., (2015). Assessing the national logistics system of Vietnam. The Asian Journal of Shipping and Logistics, 31(1), 21-58.
  • Beemsterboer, D. J. C., Hendrix, E. M. T., Claassen, G. D. H. (2018). On solving the Best-Worst Method in multi-criteria decision-making. IFAC-PapersOnLine, 51(11), 1660–1665. https://doi.org/10.1016/j.ifacol.2018.08.218
  • Blome C. And Schoenherr T. (2011), 'Supply Risk Management in Financial Crises – A Multiple Case-Study Approach,' International Journal of Production Economics, Vol. 134, No. 1, pp. 43-57. https://doi.org/10.1016/j.ijpe.2011.01.002
  • Bonney, M., & Jaber, M. Y. (2013). Developing an input–output activity matrix (IOAM) for environmental and economic analysis of manufacturing systems and logistics chains. International Journal of Production Economics, 143, 589–597. https://doi.org/10.1016/j.ijpe.2011.12.016
  • Boopen, S. (2006). Transport Infrastructure and Economic Growth: Evidence from Africa Using Dynamic Panel Estimates. The Empirical Economics Letters, 5(1), 37-52.
  • Bouzon, M., Govindan, K., Rodriguez, C. M. T. (2018). Evaluating barriers for reverse logistics implementation under a multiple stakeholders' perspective analysis using grey decision-making approach. Resources, Conservation and Recycling, 128, 315–335. https://doi.org/10.1016/j.resconrec.2016.11.022
  • Büyüközkan, G., Feyzioğlu, O., & Sakir Ersoy, M. (2009). Evaluation of 4PL operating models: A decision making approach based on 2-additive Choquet integral. International Journal of Production Economics, 121(1), 112–120. https://doi.org/10.1016/j.ijpe.2008.03.013
  • Büyüközkan, G., Güleryüz, S., Karpak, B. (2017). A new combined IF-DEMATEL and IF-ANP approach for CRM partner evaluation. International Journal of Production Economics, 191, 194–206. https://doi.org/10.1016/j.ijpe.2017.05.012
  • Çakir, E. (2017). Kriter Ağırlıklarının SWARA – COPELAND Yöntemi ile Belirlenmesi: Bir Üretim İşletmesinde Uygulama. Adnan Menderes Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 4(1), 42–56. https://doi.org/10.30803/adusobed.309069
  • Caplice, C., & Sheffi, Y. (1995). A review and evaluation of logistics performance measurement systems. International Journal of Logistics Management, 6(1), 61–74.
  • Çekerol, G. S. and Kurnaz, N. (2011). Küresel Kriz Ekseninde Lojistik Sektörü ve Rekabet Analizi . Selçuk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi , (25) , 47-59.
  • Chang, B., Chang, C.-W.,Wu, C.-H. (2011). Fuzzy DEMATEL method for developing supplier selection criteria. Expert Systems with Applications, 38(3), 1850–1858. https://doi.org/10.1016/j.eswa.2010.07.114
  • Chow, G., Heaver, T. D., & Henriksson, L. E. (1994). Logistics performance: Definition and measurement. International Journal of Physical Distribution & Logistics Management, 24(1), 17–28. https://doi.org/10.1108/09600039410055981
  • Dalalah, D., Hayajneh, M., Batieha, F. (2011). A fuzzy multi-criteria decision-making model for supplier selection. Expert Systems with Applications, 38(7), 8384–8391. https://doi.org/10.1016/j.eswa.2011.01.031
  • Dang, V. L. & Yeo, G.T., (2018). Weighing the Key Factors to Improve Vietnam's Logistics System, The Asian Journal of Shipping and Logistics 34(4), 308-316.
  • Djankov, S., Freund, C. & Pham, C. S. (2006). Trading on Time [Working Paper Nº 3909]. The World Bank Policy Research Working Paper, Washington, D.C., 39.
  • Du, S. (2023). Hybrid Kano-DEMATEL-TOPSIS model-based benefit distribution of multiple logistics service providers considering consumer service evaluation of segmented task. Expert Systems with Applications, 213, 119292. https://doi.org/10.1016/j.eswa.2022.119292
  • Ekin, E., Sarul, L. S. (2022). Investigation Of Smart City Components by AHP- BWM-FUCOM and DEMATEL Methods. Alphanumeric Journal. https://doi.org/10.17093/alphanumeric.1210018
  • Ergun, H., Gülal, M., & Kiliçarslan, A. (2022). Lisanslı Depoculuk Sektöründe Faaliyet Gösteren Şirketlerin İşlem Performanslarının Çok Kriterli Karar Verme Yöntemleriyle Ölçülmesi. Muhasebe ve Finansman Dergisi, 94, 105–132. https://doi.org/10.25095/mufad.1054068
  • Eygü, H. & Kılınç, A. (2020). OECD Ülkelerinin Lojistik Performans Endekslerinin Ridge Regresyon Analizi İle Araştırılması. Trakya Üniversitesi Sosyal Bilimler Dergisi, 22(2) ,899-919.
  • Fechner, I., (2010). Role of logistics centres in national logistics system. Electronic Scientific Journal of Logistics, 6(2).
  • Folinas, D., Naoum T., and Dimitrios A. (2018). "Logistics Services Sector and Economic Recession in Greece: Challenges and Opportunities" Logistics 2, no. 3: 16. https://doi.org/10.3390/logistics2030016
  • Gabus, A., Fontela, E. (1972). World problems, an invitation to further thought within the framework of DEMATEL.Battelle Geneva Research Centre, Geneva, Switzerland.
  • Gögebakan, M. (2022). Ülkelerin lojistik performanslarının Entropi tabanlı TOPSIS yöntemine göre sıralanması. Akıllı Ulaşım Sistemleri ve Uygulamaları Dergisi, 5 (2) , 146-156. DOI: 10.51513/jitsa.1128888
  • Gök Kısa, A. C. & Ayçin, E. (2019). OECD Ülkelerinin Lojistik Performanslarının SWARA Tabanlı EDAS Yöntemi ile Değerlendirilmesi. Çankırı Karatekin Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi,, 9 (1) , 301-325. DOI: 10.18074/ckuiibfd.500320
  • Gölcük, İ., Baykasoğlu, A. (2016). An analysis of DEMATEL approaches for criteria interaction handling within ANP. Expert Systems with Applications, 46, 346–366. https://doi.org/10.1016/j.eswa.2015.10.041
  • Guarnieri, P., Sobreiro, V. A., Nagan, M. S., & Serrano, A. L. M. (2015). The challenge of selecting and evaluating third-party reverse logistics providers in a multi-criteria perspective: A Brazilian case. Journal of Cleaner Production, 96, 209–219. https://doi.org/10.1016/j.jclepro.2014.05.040
  • Gunasekaran, A., & Kobu, B. (2007). Performance measures and metrics in logistics and supply chain management: A review of recent literature (1995–2004) for research and applications. International Journal of Production Research, 45(12), 2819–2840. https://doi.org/10.1080/00207540600806513
  • Hamdan, A., & Rogers, K. J. (2008). Evaluating the efficiency of 3PL logistics operations. International Journal of Production Economics, 113(1), 235–244. https://doi.org/10.1016/j.ijpe.2007.05.019
  • Hausman, Warren H., Lee, Hau L. and Subramanian, Subramanian, U. (2005). Global Logistics Indicators, Supply Chain Metrics, and Bilateral Trade Patterns. World Bank Policy Research Working Paper No. 3773, http://dx.doi.org/10.2139/ssrn.869999
  • Hsieh, C.-H., Zhang, M. (2022). Critical factors affecting performance of logistics operation planning considering interdependency: A case study in automotive aftermarket. Asian Transport Studies, 8, 100055. https://doi.org/10.1016/j.eastsj.2022.100055
  • Hsu, C.-T., Chou, M.-T., Ding, J.-F. (2023). Key factors for the success of smart ports during the post-pandemic era. Ocean & Coastal Management, 233, 106455. https://doi.org/10.1016/j.ocecoaman.2022.106455
  • Hsu, C.-W., Kuo, T.-C., Chen, S.-H., Hu, A. H. (2013). Using DEMATEL to develop a carbon management model of supplier selection in green supply chain management. Journal of Cleaner Production, 56, 164–172. https://doi.org/10.1016/j.jclepro.2011.09.012
  • Jhawar, A. & Garg, S. K. (2018). Modeling of Critical Factors for Improving Logistics Performance of India Using Interpretive Structural Modelling. International Journal of Applied Management Sciences and Engineering, 5(1).
  • Jüttner, U. and Maklan, S. (2011), "Supply chain resilience in the global financial crisis: an empirical study", Supply Chain Management, Vol. 16 No. 4, pp. 246-259. https://doi.org/10.1108/13598541111139062
  • K. Sharipbekova & Z. Raimbekov, (2018). Influence of Logistics Efficiency on Economic Growth of the CIS Countries, European Research Studies Journal, European Research Studies Journal, 0(2), 678-690.
  • Kálmán, B., & Tóth, A. (2021). “Links between the economy competitiveness and logistics performance in the Visegrád Group countries: Empirical evidence for the years 2007-2018”. Entrepreneurial Business and Economics Review, 9(3), 169-190. https://doi.org/10.15678/EBER.2021.090311
  • Karakaş Geyik, S., Satman, M., & Kalyoncu, G. (2022). G20 Ülkelerinin Covid-19 Pandemisi ile Mücadele Performanslarının Çok Kriterli Karar Verme Yöntemleri ile Değerlendirilmesi. Ekoist: Journal of Econometrics and Statistics, 0(37), 27–52. https://doi.org/10.26650/ekoist.2022.37.1161945
  • Karim, N. H., Abdul Rahman, N.S. F., Syed Johari Shah, S. F. S., (2018). Empirical evidence on failure factors of warehouse productivity in Malaysian logistics service sector. The Asian Journal of Shipping and Logistics, 34 (2), 151-160.
  • Kauppinen and Lindqvist., (2006). Elements for European logistics policy: a discussion paper. Ministry of Transport and Communications, Helsinki, Finland.
  • Kilic, H. S., Yurdaer, P., Aglan, C. (2021). A leanness assessment methodology based on neutrosophic DEMATEL. Journal of Manufacturing Systems, 59, 320–344. https://doi.org/10.1016/j.jmsy.2021.03.003
  • Korinek, J. & Sourdin, P. (2011). To What Extent Are High-Quality Logistics Services Trade Facilitating? OECD Trade Policy Working Papers, No.108, 1-42, OECD Publishing.
  • Lai, K. H., Ngai, E. W., & Cheng, T. C. E. (2002). Measures for evaluating supply chain performance in transport logistics. In Transportation Research Part E: Logistics and Transportation Review (pp. 38(6), 439–456).
  • Lambert, Douglas M., James R. Stock and Lisa M. Ellram (1998), Fundamentals of Logistics Management, Irwin McGraw-Hill, USA.
  • Landers, Thomas L., Alejandro Mendoza and John R. English (2008), "Logistics Metrics", Introduction to Logistics Engineering, Ed. Don Taylor, CRC Press, USA.
  • Lebas , M. J. (1995). Performance measurement and performance management. Int. J. Production Economic, s. 23-35.
  • Levchenko, A. (2004). Institutional Quality and International Trade [Working Paper Nº 04/231]. International Monetary Fund. Washington, D.C.
  • Liang, F., Brunelli, M., Rezaei, J. (2020). Consistency issues in the best worst method: Measurements and thresholds. Omega, 96, 102175. https://doi.org/10.1016/j.omega.2019.102175
  • Lu, C.S., Lin, C.C., (2012). Assessment of national logistics competence in Taiwan, Vietnam, and Malaysia. The Asian Journal of Shipping and Logistics, 28(2), 255-274.
  • Manavgat, G. & Demirci, A. (2021). Lojistik Performans Endeksi Tutarlılığının Sıralı Lojistik Regresyon Modeliyle İncelenmesi. Yaşar Üniversitesi E-Dergisi, 16 (64), 1856-1871. DOI: 10.19168/jyasar.934418
  • Marchet, G., Melacini, M., Perotti, S., Sassi, C., & Tappia, E. (2017). Value creation models in the 3PL industry: What 3PL providers do to cope with shipper requirements. International Journal of Physical Distribution & Logistics Management, 47(6), 472–494. https://doi.org/10.1108/IJPDLM-04-2016-0120
  • Markley, M.J., and Davis, L., (2007). Exploring Future Competitive Advantage Through Sustainable Supply Chains. Int. J. Phys. Distrib. Logist. Manag. 37 (9), 763-774.
  • Mi, X., Tang, M., Liao, H., Shen, W., Lev, B. (2019). The state-of-the-art survey on integrations and applications of the best worst method in decision making: Why, what, what for and what's next? Omega, 87, 205–225. https://doi.org/10.1016/j.omega.2019.01.009
  • Munim, Z. H., Saha, R., Schøyen, H., Ng, A. K. Y., Notteboom, T. E. (2022). Autonomous ships for container shipping in the Arctic routes. Journal of Marine Science and Technology, 27(1), 320–334. https://doi.org/10.1007/s00773-021-00836-8
  • Nguyen, T. C. and Le, Trung H, (2022). “Financial Crises and the National Logistics Performance: Evidence From Emerging and Developing Countries”. Forthcoming, International Journal of Finance & Economics https://doi.org/10.1002/ijfe.2768, Available at SSRN: https://ssrn.com/abstract=4315596
  • Özdemirci, F., Yüksel, S., Dinçer, H., Eti, S. (2023). An assessment of alternative social banking systems using T-Spherical fuzzy TOP-DEMATEL approach. Decision Analytics Journal, 100184. https://doi.org/10.1016/j.dajour.2023.100184
  • Parhi, S., Joshi, K., Gunasekaran, A., Sethuraman, K. (2022). Reflecting on an empirical study of the digitalization initiatives for sustainability on logistics: The concept of sustainable logistics 4.0. Cleaner Logistics and Supply Chain, 4, 100058. https://doi.org/10.1016/j.clscn.2022.100058
  • Qaiser, F. H., Ahmed, K., Sykora, M., Choudhary, A., & Simpson, M. (2017). Decision support systems for sustainable logistics: A review and bibliometric analysis. Industrial Management & Data Systems, 117(7),1376–1388. https://doi.org/10.1108/IMDS-09-2016-0410
  • Qureshi, M. N., Kumar, D., & Kumar, P. (2008). An integrated model to identify and classify the key criteria and their role in the assessment of 3PL services providers. Asia Pacific Journal of Marketing and Logistics, 20(2), 227–249. https://doi.org/10.1108/13555850810864579
  • Qureshi, M. N., Kumar, P., & Kumar, D. (2009). Framework for benchmarking logistics performance using fuzzy AHP. International Journal of Business Performance and Supply Chain Modelling, 1(1), 82– 98. https://doi.org/10.1504/IJBPSCM.2009.026267
  • Rezaei, J. (2015). Best-worst multi-criteria decision-making method. Omega, 53, 49–57. https://doi.org/10.1016/j.omega.2014.11.009
  • Rezaei, J. (2016). Best-worst multi-criteria decision-making method: Some properties and a linear model. Omega, 64, 126–130. https://doi.org/10.1016/j.omega.2015.12.001
  • Rezaei, J., van Roekel, W. S., Tavasszy, L. (2018). Measuring the relative importance of the logistics performance index indicators using Best Worst Method. Transport Policy, 68, 158–169. https://doi.org/10.1016/j.tranpol.2018.05.007
  • Rezaei, J., van Roekel, W. S., Tavasszy, L. (2018). Measuring the relative importance of the logistics performance index indicators using Best Worst Method. Transport Policy, 68, 158–169. https://doi.org/10.1016/j.tranpol.2018.05.007
  • Roy, S. N., & Sengupta, T. (2018). Quintessence of third party (3PL) logistics. Journal of Global Operations and Strategic Sourcing, 11(2), 146–173. https://doi.org/10.1108/JGOSS-05-2017-0012
  • Sarkis, J. (2021), "Supply chain sustainability: learning from the COVID-19 pandemic", International Journal of Operations & Production Management, Vol. 41 No. 1, pp. 63-73. https://doi.org/10.1108/IJOPM-08-2020-0568
  • Si, S.-L., You, X.-Y., Liu, H.-C., Zhang, P. (2018). DEMATEL Technique: A Systematic Review of the State-of-the-Art Literature on Methodologies and Applications. Mathematical Problems in Engineering, 2018, 1–33. https://doi.org/10.1155/2018/3696457
  • Tezuka, K. (2011). Rationale for utilizing 3PL in supply chain management: A shippers' economic perspective. IATSS Research, 35, 24–29. https://doi.org/10.1016/j.iatssr.2011.07.001
  • Tzeng, G., Chiang, C., Li, C. (2007). Evaluating intertwined effects in e-learning programs: A novel hybrid MCDM model based on factor analysis and DEMATEL. Expert Systems with Applications, 32(4), 1028–1044. https://doi.org/10.1016/j.eswa.2006.02.004
  • Ulu, M., Türkan, Y. S. & Mengüç, K. (2022). Trafik kazalarını etkileyen faktörlerin ağırlıklarının BWM ve SWARA yöntemleri ile belirlenmesi . Akıllı Ulaşım Sistemleri ve Uygulamaları Dergisi, 5 (2) , 227-238 . DOI: 10.51513/jitsa.1084833
  • Ulu, M., Türkan, Y. S., Mengüç, K. (2022). BWM ve SWARA yöntemleri ile trafik kazaları kriter ağırlıklarının belirlenmesi. Akıllı Ulaşım Sistemleri ve Uygulamaları Dergisi. https://doi.org/10.51513/jitsa.1084833
  • Uygun, Ö., Kaçamak, H., Kahraman, Ü. A. (2015). An integrated DEMATEL and Fuzzy ANP techniques for evaluation and selection of outsourcing provider for a telecommunication company. Computers & Industrial Engineering, 86, 137–146. https://doi.org/10.1016/j.cie.2014.09.014
  • Vishwakarma, A., Dangayach, G. S., Meena, M. L., Gupta, S. (2022). Analyzing barriers of sustainable supply chain in apparel & textile sector: A hybrid ISM-MICMAC and DEMATEL approach. Cleaner Logistics and Supply Chain, 5, 100073. https://doi.org/10.1016/j.clscn.2022.100073
  • Wątrobski, J. (2016). Outline of multi-criteria decision-making in green logistics. Transportation Research Procedia, 16, 537–552.
  • World Bank. (2022). International LPI – Global rankings 2022. Accesed: 2 November 2022, https://lpi.worldbank.org/international/global/2022.
  • Wouters, M. (2009). A developmental approach to performance measures-Results from a longitudinal case study. European Management Journal (27), s. 64-78.
  • Wu, W.-W. (2008). Choosing knowledge management strategies by using a combined ANP and DEMATEL approach. Expert Systems with Applications, 35(3), 828–835. https://doi.org/10.1016/j.eswa.2007.07.025
  • Yean, T.S., Das, S.B., (2016). Logistics Integration in ASEAN Faces Serious Challenges ISEAS Perspective, ISEAS - Yusof Ishak Institute, Singapore. ISSUE: 2016 No. 55 ISSN, 2335-6677.

Küresel Kriz Ortamında Lojistik Performansını Etkileyen Faktörlerin DEMATEL ve BWM ile Değerlendirilmesi

Year 2023, Volume: 6 Issue: 2, 300 - 325, 23.10.2023
https://doi.org/10.51513/jitsa.1261018

Abstract

Ülkelerin ekonomik refah seviyelerinin en önemli göstergelerinden biri lojistik faaliyetleri performans düzeyleridir. Bu sebeple lojistik faaliyetlerin performansı ekonomik şartlara oldukça duyarlıdır. Son yıllarda pandemi ve savaş etkisi ile küresel boyutlara ulaşan ekonomik kriz ortamı, lojistik yönetimi performanslarının yeniden gözden geçirilmesi gerektiğini açıkça göstermiştir. Dolayısıyla ülkeler düzeyinde ulusal ve küresel seviyede uluslararası lojistik yönetimi performansını etkileyen kritik faktörlerin yeniden değerlendirilmesi önemlidir. Bu çalışmada lojistik yönetimi performansını etkileyen ulusal ve uluslararası kritik faktörler ekonomik kriz ortamı için analiz edilmiştir. Bu amaçla uzman görüşleri ve bilimsel yazın taraması sonucu belirlenen faktörler DEMATEL ve BWM yöntemleri ile değerlendirilmiştir. Analiz sonucunda küresel lojistik performansını etkileyen faktörler belirlenerek önem sıralarına göre yorumlanmıştır. Çalışmanın amacı, küresel ekonomik kriz ortamında ülkelerin lojistik performanslarını etkileyen faktörleri analiz ederek, güncel bir değerlendirme ortaya koymaktır.

References

  • Agility Emerging Markets Logistics Index. (2022). AEMLI-2022, Accessed: 22 December 2022, https://www.agility.com/en/emerging-markets-logistics-index/.
  • Agyekum, E. B., Kumar, N. M., Mehmood, U., Panjwani, M. K., Haes Alhelou, H., Adebayo, T. S., Al-Hinai, A. (2021). Decarbonize Russia—A Best–Worst Method approach for assessing the renewable energy potentials, opportunities and challenges. Energy Reports, 7, 4498–4515. https://doi.org/10.1016/j.egyr.2021.07.039
  • Aksakal E, Dağdeviren M. (2010). ANP ve DEMATEL yöntemleri ile personel seçimi problemine bütünleşik bir yaklaşım. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 25(4), 905-913.
  • Andrejic, M. & Kilibarda, M. (2014). Global Logistics Effıciency Index, 8th International Quality Conference, 857-862.
  • Arvis, Jean-François, Ben Shepherd, Yann Duval, and Chorthip Utoktham. (2016). Trade Costs and Development: A New Data Set. Economic Premise, January 2016, Issue 104. World Bank, Poverty Reduction and Economic Management Network, Washington, DC.
  • Banomyong, R., Thai, V.V., Yuen K.F., (2015). Assessing the national logistics system of Vietnam. The Asian Journal of Shipping and Logistics, 31(1), 21-58.
  • Beemsterboer, D. J. C., Hendrix, E. M. T., Claassen, G. D. H. (2018). On solving the Best-Worst Method in multi-criteria decision-making. IFAC-PapersOnLine, 51(11), 1660–1665. https://doi.org/10.1016/j.ifacol.2018.08.218
  • Blome C. And Schoenherr T. (2011), 'Supply Risk Management in Financial Crises – A Multiple Case-Study Approach,' International Journal of Production Economics, Vol. 134, No. 1, pp. 43-57. https://doi.org/10.1016/j.ijpe.2011.01.002
  • Bonney, M., & Jaber, M. Y. (2013). Developing an input–output activity matrix (IOAM) for environmental and economic analysis of manufacturing systems and logistics chains. International Journal of Production Economics, 143, 589–597. https://doi.org/10.1016/j.ijpe.2011.12.016
  • Boopen, S. (2006). Transport Infrastructure and Economic Growth: Evidence from Africa Using Dynamic Panel Estimates. The Empirical Economics Letters, 5(1), 37-52.
  • Bouzon, M., Govindan, K., Rodriguez, C. M. T. (2018). Evaluating barriers for reverse logistics implementation under a multiple stakeholders' perspective analysis using grey decision-making approach. Resources, Conservation and Recycling, 128, 315–335. https://doi.org/10.1016/j.resconrec.2016.11.022
  • Büyüközkan, G., Feyzioğlu, O., & Sakir Ersoy, M. (2009). Evaluation of 4PL operating models: A decision making approach based on 2-additive Choquet integral. International Journal of Production Economics, 121(1), 112–120. https://doi.org/10.1016/j.ijpe.2008.03.013
  • Büyüközkan, G., Güleryüz, S., Karpak, B. (2017). A new combined IF-DEMATEL and IF-ANP approach for CRM partner evaluation. International Journal of Production Economics, 191, 194–206. https://doi.org/10.1016/j.ijpe.2017.05.012
  • Çakir, E. (2017). Kriter Ağırlıklarının SWARA – COPELAND Yöntemi ile Belirlenmesi: Bir Üretim İşletmesinde Uygulama. Adnan Menderes Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 4(1), 42–56. https://doi.org/10.30803/adusobed.309069
  • Caplice, C., & Sheffi, Y. (1995). A review and evaluation of logistics performance measurement systems. International Journal of Logistics Management, 6(1), 61–74.
  • Çekerol, G. S. and Kurnaz, N. (2011). Küresel Kriz Ekseninde Lojistik Sektörü ve Rekabet Analizi . Selçuk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi , (25) , 47-59.
  • Chang, B., Chang, C.-W.,Wu, C.-H. (2011). Fuzzy DEMATEL method for developing supplier selection criteria. Expert Systems with Applications, 38(3), 1850–1858. https://doi.org/10.1016/j.eswa.2010.07.114
  • Chow, G., Heaver, T. D., & Henriksson, L. E. (1994). Logistics performance: Definition and measurement. International Journal of Physical Distribution & Logistics Management, 24(1), 17–28. https://doi.org/10.1108/09600039410055981
  • Dalalah, D., Hayajneh, M., Batieha, F. (2011). A fuzzy multi-criteria decision-making model for supplier selection. Expert Systems with Applications, 38(7), 8384–8391. https://doi.org/10.1016/j.eswa.2011.01.031
  • Dang, V. L. & Yeo, G.T., (2018). Weighing the Key Factors to Improve Vietnam's Logistics System, The Asian Journal of Shipping and Logistics 34(4), 308-316.
  • Djankov, S., Freund, C. & Pham, C. S. (2006). Trading on Time [Working Paper Nº 3909]. The World Bank Policy Research Working Paper, Washington, D.C., 39.
  • Du, S. (2023). Hybrid Kano-DEMATEL-TOPSIS model-based benefit distribution of multiple logistics service providers considering consumer service evaluation of segmented task. Expert Systems with Applications, 213, 119292. https://doi.org/10.1016/j.eswa.2022.119292
  • Ekin, E., Sarul, L. S. (2022). Investigation Of Smart City Components by AHP- BWM-FUCOM and DEMATEL Methods. Alphanumeric Journal. https://doi.org/10.17093/alphanumeric.1210018
  • Ergun, H., Gülal, M., & Kiliçarslan, A. (2022). Lisanslı Depoculuk Sektöründe Faaliyet Gösteren Şirketlerin İşlem Performanslarının Çok Kriterli Karar Verme Yöntemleriyle Ölçülmesi. Muhasebe ve Finansman Dergisi, 94, 105–132. https://doi.org/10.25095/mufad.1054068
  • Eygü, H. & Kılınç, A. (2020). OECD Ülkelerinin Lojistik Performans Endekslerinin Ridge Regresyon Analizi İle Araştırılması. Trakya Üniversitesi Sosyal Bilimler Dergisi, 22(2) ,899-919.
  • Fechner, I., (2010). Role of logistics centres in national logistics system. Electronic Scientific Journal of Logistics, 6(2).
  • Folinas, D., Naoum T., and Dimitrios A. (2018). "Logistics Services Sector and Economic Recession in Greece: Challenges and Opportunities" Logistics 2, no. 3: 16. https://doi.org/10.3390/logistics2030016
  • Gabus, A., Fontela, E. (1972). World problems, an invitation to further thought within the framework of DEMATEL.Battelle Geneva Research Centre, Geneva, Switzerland.
  • Gögebakan, M. (2022). Ülkelerin lojistik performanslarının Entropi tabanlı TOPSIS yöntemine göre sıralanması. Akıllı Ulaşım Sistemleri ve Uygulamaları Dergisi, 5 (2) , 146-156. DOI: 10.51513/jitsa.1128888
  • Gök Kısa, A. C. & Ayçin, E. (2019). OECD Ülkelerinin Lojistik Performanslarının SWARA Tabanlı EDAS Yöntemi ile Değerlendirilmesi. Çankırı Karatekin Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi,, 9 (1) , 301-325. DOI: 10.18074/ckuiibfd.500320
  • Gölcük, İ., Baykasoğlu, A. (2016). An analysis of DEMATEL approaches for criteria interaction handling within ANP. Expert Systems with Applications, 46, 346–366. https://doi.org/10.1016/j.eswa.2015.10.041
  • Guarnieri, P., Sobreiro, V. A., Nagan, M. S., & Serrano, A. L. M. (2015). The challenge of selecting and evaluating third-party reverse logistics providers in a multi-criteria perspective: A Brazilian case. Journal of Cleaner Production, 96, 209–219. https://doi.org/10.1016/j.jclepro.2014.05.040
  • Gunasekaran, A., & Kobu, B. (2007). Performance measures and metrics in logistics and supply chain management: A review of recent literature (1995–2004) for research and applications. International Journal of Production Research, 45(12), 2819–2840. https://doi.org/10.1080/00207540600806513
  • Hamdan, A., & Rogers, K. J. (2008). Evaluating the efficiency of 3PL logistics operations. International Journal of Production Economics, 113(1), 235–244. https://doi.org/10.1016/j.ijpe.2007.05.019
  • Hausman, Warren H., Lee, Hau L. and Subramanian, Subramanian, U. (2005). Global Logistics Indicators, Supply Chain Metrics, and Bilateral Trade Patterns. World Bank Policy Research Working Paper No. 3773, http://dx.doi.org/10.2139/ssrn.869999
  • Hsieh, C.-H., Zhang, M. (2022). Critical factors affecting performance of logistics operation planning considering interdependency: A case study in automotive aftermarket. Asian Transport Studies, 8, 100055. https://doi.org/10.1016/j.eastsj.2022.100055
  • Hsu, C.-T., Chou, M.-T., Ding, J.-F. (2023). Key factors for the success of smart ports during the post-pandemic era. Ocean & Coastal Management, 233, 106455. https://doi.org/10.1016/j.ocecoaman.2022.106455
  • Hsu, C.-W., Kuo, T.-C., Chen, S.-H., Hu, A. H. (2013). Using DEMATEL to develop a carbon management model of supplier selection in green supply chain management. Journal of Cleaner Production, 56, 164–172. https://doi.org/10.1016/j.jclepro.2011.09.012
  • Jhawar, A. & Garg, S. K. (2018). Modeling of Critical Factors for Improving Logistics Performance of India Using Interpretive Structural Modelling. International Journal of Applied Management Sciences and Engineering, 5(1).
  • Jüttner, U. and Maklan, S. (2011), "Supply chain resilience in the global financial crisis: an empirical study", Supply Chain Management, Vol. 16 No. 4, pp. 246-259. https://doi.org/10.1108/13598541111139062
  • K. Sharipbekova & Z. Raimbekov, (2018). Influence of Logistics Efficiency on Economic Growth of the CIS Countries, European Research Studies Journal, European Research Studies Journal, 0(2), 678-690.
  • Kálmán, B., & Tóth, A. (2021). “Links between the economy competitiveness and logistics performance in the Visegrád Group countries: Empirical evidence for the years 2007-2018”. Entrepreneurial Business and Economics Review, 9(3), 169-190. https://doi.org/10.15678/EBER.2021.090311
  • Karakaş Geyik, S., Satman, M., & Kalyoncu, G. (2022). G20 Ülkelerinin Covid-19 Pandemisi ile Mücadele Performanslarının Çok Kriterli Karar Verme Yöntemleri ile Değerlendirilmesi. Ekoist: Journal of Econometrics and Statistics, 0(37), 27–52. https://doi.org/10.26650/ekoist.2022.37.1161945
  • Karim, N. H., Abdul Rahman, N.S. F., Syed Johari Shah, S. F. S., (2018). Empirical evidence on failure factors of warehouse productivity in Malaysian logistics service sector. The Asian Journal of Shipping and Logistics, 34 (2), 151-160.
  • Kauppinen and Lindqvist., (2006). Elements for European logistics policy: a discussion paper. Ministry of Transport and Communications, Helsinki, Finland.
  • Kilic, H. S., Yurdaer, P., Aglan, C. (2021). A leanness assessment methodology based on neutrosophic DEMATEL. Journal of Manufacturing Systems, 59, 320–344. https://doi.org/10.1016/j.jmsy.2021.03.003
  • Korinek, J. & Sourdin, P. (2011). To What Extent Are High-Quality Logistics Services Trade Facilitating? OECD Trade Policy Working Papers, No.108, 1-42, OECD Publishing.
  • Lai, K. H., Ngai, E. W., & Cheng, T. C. E. (2002). Measures for evaluating supply chain performance in transport logistics. In Transportation Research Part E: Logistics and Transportation Review (pp. 38(6), 439–456).
  • Lambert, Douglas M., James R. Stock and Lisa M. Ellram (1998), Fundamentals of Logistics Management, Irwin McGraw-Hill, USA.
  • Landers, Thomas L., Alejandro Mendoza and John R. English (2008), "Logistics Metrics", Introduction to Logistics Engineering, Ed. Don Taylor, CRC Press, USA.
  • Lebas , M. J. (1995). Performance measurement and performance management. Int. J. Production Economic, s. 23-35.
  • Levchenko, A. (2004). Institutional Quality and International Trade [Working Paper Nº 04/231]. International Monetary Fund. Washington, D.C.
  • Liang, F., Brunelli, M., Rezaei, J. (2020). Consistency issues in the best worst method: Measurements and thresholds. Omega, 96, 102175. https://doi.org/10.1016/j.omega.2019.102175
  • Lu, C.S., Lin, C.C., (2012). Assessment of national logistics competence in Taiwan, Vietnam, and Malaysia. The Asian Journal of Shipping and Logistics, 28(2), 255-274.
  • Manavgat, G. & Demirci, A. (2021). Lojistik Performans Endeksi Tutarlılığının Sıralı Lojistik Regresyon Modeliyle İncelenmesi. Yaşar Üniversitesi E-Dergisi, 16 (64), 1856-1871. DOI: 10.19168/jyasar.934418
  • Marchet, G., Melacini, M., Perotti, S., Sassi, C., & Tappia, E. (2017). Value creation models in the 3PL industry: What 3PL providers do to cope with shipper requirements. International Journal of Physical Distribution & Logistics Management, 47(6), 472–494. https://doi.org/10.1108/IJPDLM-04-2016-0120
  • Markley, M.J., and Davis, L., (2007). Exploring Future Competitive Advantage Through Sustainable Supply Chains. Int. J. Phys. Distrib. Logist. Manag. 37 (9), 763-774.
  • Mi, X., Tang, M., Liao, H., Shen, W., Lev, B. (2019). The state-of-the-art survey on integrations and applications of the best worst method in decision making: Why, what, what for and what's next? Omega, 87, 205–225. https://doi.org/10.1016/j.omega.2019.01.009
  • Munim, Z. H., Saha, R., Schøyen, H., Ng, A. K. Y., Notteboom, T. E. (2022). Autonomous ships for container shipping in the Arctic routes. Journal of Marine Science and Technology, 27(1), 320–334. https://doi.org/10.1007/s00773-021-00836-8
  • Nguyen, T. C. and Le, Trung H, (2022). “Financial Crises and the National Logistics Performance: Evidence From Emerging and Developing Countries”. Forthcoming, International Journal of Finance & Economics https://doi.org/10.1002/ijfe.2768, Available at SSRN: https://ssrn.com/abstract=4315596
  • Özdemirci, F., Yüksel, S., Dinçer, H., Eti, S. (2023). An assessment of alternative social banking systems using T-Spherical fuzzy TOP-DEMATEL approach. Decision Analytics Journal, 100184. https://doi.org/10.1016/j.dajour.2023.100184
  • Parhi, S., Joshi, K., Gunasekaran, A., Sethuraman, K. (2022). Reflecting on an empirical study of the digitalization initiatives for sustainability on logistics: The concept of sustainable logistics 4.0. Cleaner Logistics and Supply Chain, 4, 100058. https://doi.org/10.1016/j.clscn.2022.100058
  • Qaiser, F. H., Ahmed, K., Sykora, M., Choudhary, A., & Simpson, M. (2017). Decision support systems for sustainable logistics: A review and bibliometric analysis. Industrial Management & Data Systems, 117(7),1376–1388. https://doi.org/10.1108/IMDS-09-2016-0410
  • Qureshi, M. N., Kumar, D., & Kumar, P. (2008). An integrated model to identify and classify the key criteria and their role in the assessment of 3PL services providers. Asia Pacific Journal of Marketing and Logistics, 20(2), 227–249. https://doi.org/10.1108/13555850810864579
  • Qureshi, M. N., Kumar, P., & Kumar, D. (2009). Framework for benchmarking logistics performance using fuzzy AHP. International Journal of Business Performance and Supply Chain Modelling, 1(1), 82– 98. https://doi.org/10.1504/IJBPSCM.2009.026267
  • Rezaei, J. (2015). Best-worst multi-criteria decision-making method. Omega, 53, 49–57. https://doi.org/10.1016/j.omega.2014.11.009
  • Rezaei, J. (2016). Best-worst multi-criteria decision-making method: Some properties and a linear model. Omega, 64, 126–130. https://doi.org/10.1016/j.omega.2015.12.001
  • Rezaei, J., van Roekel, W. S., Tavasszy, L. (2018). Measuring the relative importance of the logistics performance index indicators using Best Worst Method. Transport Policy, 68, 158–169. https://doi.org/10.1016/j.tranpol.2018.05.007
  • Rezaei, J., van Roekel, W. S., Tavasszy, L. (2018). Measuring the relative importance of the logistics performance index indicators using Best Worst Method. Transport Policy, 68, 158–169. https://doi.org/10.1016/j.tranpol.2018.05.007
  • Roy, S. N., & Sengupta, T. (2018). Quintessence of third party (3PL) logistics. Journal of Global Operations and Strategic Sourcing, 11(2), 146–173. https://doi.org/10.1108/JGOSS-05-2017-0012
  • Sarkis, J. (2021), "Supply chain sustainability: learning from the COVID-19 pandemic", International Journal of Operations & Production Management, Vol. 41 No. 1, pp. 63-73. https://doi.org/10.1108/IJOPM-08-2020-0568
  • Si, S.-L., You, X.-Y., Liu, H.-C., Zhang, P. (2018). DEMATEL Technique: A Systematic Review of the State-of-the-Art Literature on Methodologies and Applications. Mathematical Problems in Engineering, 2018, 1–33. https://doi.org/10.1155/2018/3696457
  • Tezuka, K. (2011). Rationale for utilizing 3PL in supply chain management: A shippers' economic perspective. IATSS Research, 35, 24–29. https://doi.org/10.1016/j.iatssr.2011.07.001
  • Tzeng, G., Chiang, C., Li, C. (2007). Evaluating intertwined effects in e-learning programs: A novel hybrid MCDM model based on factor analysis and DEMATEL. Expert Systems with Applications, 32(4), 1028–1044. https://doi.org/10.1016/j.eswa.2006.02.004
  • Ulu, M., Türkan, Y. S. & Mengüç, K. (2022). Trafik kazalarını etkileyen faktörlerin ağırlıklarının BWM ve SWARA yöntemleri ile belirlenmesi . Akıllı Ulaşım Sistemleri ve Uygulamaları Dergisi, 5 (2) , 227-238 . DOI: 10.51513/jitsa.1084833
  • Ulu, M., Türkan, Y. S., Mengüç, K. (2022). BWM ve SWARA yöntemleri ile trafik kazaları kriter ağırlıklarının belirlenmesi. Akıllı Ulaşım Sistemleri ve Uygulamaları Dergisi. https://doi.org/10.51513/jitsa.1084833
  • Uygun, Ö., Kaçamak, H., Kahraman, Ü. A. (2015). An integrated DEMATEL and Fuzzy ANP techniques for evaluation and selection of outsourcing provider for a telecommunication company. Computers & Industrial Engineering, 86, 137–146. https://doi.org/10.1016/j.cie.2014.09.014
  • Vishwakarma, A., Dangayach, G. S., Meena, M. L., Gupta, S. (2022). Analyzing barriers of sustainable supply chain in apparel & textile sector: A hybrid ISM-MICMAC and DEMATEL approach. Cleaner Logistics and Supply Chain, 5, 100073. https://doi.org/10.1016/j.clscn.2022.100073
  • Wątrobski, J. (2016). Outline of multi-criteria decision-making in green logistics. Transportation Research Procedia, 16, 537–552.
  • World Bank. (2022). International LPI – Global rankings 2022. Accesed: 2 November 2022, https://lpi.worldbank.org/international/global/2022.
  • Wouters, M. (2009). A developmental approach to performance measures-Results from a longitudinal case study. European Management Journal (27), s. 64-78.
  • Wu, W.-W. (2008). Choosing knowledge management strategies by using a combined ANP and DEMATEL approach. Expert Systems with Applications, 35(3), 828–835. https://doi.org/10.1016/j.eswa.2007.07.025
  • Yean, T.S., Das, S.B., (2016). Logistics Integration in ASEAN Faces Serious Challenges ISEAS Perspective, ISEAS - Yusof Ishak Institute, Singapore. ISSUE: 2016 No. 55 ISSN, 2335-6677.
There are 83 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Furkan Dişkaya 0000-0001-9581-6771

Şenol Emir 0000-0002-6762-9351

Early Pub Date October 20, 2023
Publication Date October 23, 2023
Submission Date March 6, 2023
Acceptance Date October 2, 2023
Published in Issue Year 2023 Volume: 6 Issue: 2

Cite

APA Dişkaya, F., & Emir, Ş. (2023). Evaluation of Factors Affecting Logistics Performance in a Global Crisis Environment with DEMATEL and BWM. Akıllı Ulaşım Sistemleri Ve Uygulamaları Dergisi, 6(2), 300-325. https://doi.org/10.51513/jitsa.1261018