Research Article
BibTex RIS Cite

The Impact of Increasing Traffic Volume on Autonomous Vehicles in Roundabout

Year 2024, Volume: 7 Issue: 2, 146 - 165, 22.10.2024
https://doi.org/10.51513/jitsa.1449009

Abstract

This study employs the PTV VISSIM simulation software to investigate the impact of increasing traffic volumes on conventional vehicles and autonomous vehicles (AVs) with distinct behavioural traits: cautious, normal, and aggressive. The simulations cover a range of traffic volumes, from 100 to 600 vehicles, and measure the effects on travel time, emissions (CO, NOX, VOC), and fuel consumption. The results show that with increasing penetration rates of AVs, travel times generally decrease, with aggressive AVs achieving the shortest times, followed by normal, then cautious AVs. Emissions and fuel consumption also tend to decrease as the penetration rate of AVs increases. Notably, the results demonstrate that aggressive AVs excel in reducing travel time, while normal AVs consistently balance between efficiency and reduced emissions, and cautious AVs emphasize safety and lower emissions. Despite the differing behavioural traits, all AV types exhibit a marked improvement over conventional vehicles in terms of travel time, emissions, and fuel consumption. At every penetration rate, AVs lead to shorter travel times and lower emissions, with aggressive AVs being the most efficient, followed by normal and then cautious AVs. These findings emphasize the potential benefits of integrating autonomous vehicles into transportation networks. They suggest that optimizing AV behaviour, depending on the context and objectives, can lead to more efficient, environmentally friendly traffic systems. The study offers valuable insights for policymakers, urban planners, and researchers aiming to leverage the distinct strengths of each AV behaviour to create a more sustainable and efficient future for autonomous transportation.

References

  • Alghamdi, T., Mostafi, S., Abdelkader, G., & Elgazzar, K. (2022). A comparative study on traffic modeling techniques for predicting and simulating traffic behavior. Future Internet, 14(10), 294.
  • Cao, H., & Zöldy, M. (2020). An investigation of autonomous vehicle roundabout situation. Periodica Polytechnica Transportation Engineering, 48(3), 236-241.
  • Dey, D., Martens, M., Eggen, B., & Terken, J. (2017). The impact of vehicle appearance and vehicle behavior on pedestrian interaction with autonomous vehicles. Proceedings of the 9th International Conference on Automotive User Interfaces and Interactive Vehicular Applications Adjunct.
  • Karjanto, J., Yusof, N., Terken, J., Hassan, M., Delbressine, F., van Huysduynen, H. H., & Rauterberg, G. (2017). The identification of Malaysian driving styles using the multidimensional driving style inventory. MATEC Web of Conferences.
  • Khreis, H., Warsow, K. M., Verlinghieri, E., Guzman, A., Pellecuer, L., Ferreira, A., Jones, I., Heinen, E., Rojas-Rueda, D., & Mueller, N. (2016). The health impacts of traffic-related exposures in urban areas: Understanding real effects, underlying driving forces and co-producing future directions. Journal of Transport & Health, 3(3), 249-267.
  • Maheshwari, T., & Axhausen, K. W. (2021). How will the technological shift in transportation impact cities? A review of quantitative studies on the impacts of new transportation technologies. Sustainability, 13(6), 3013.
  • Mesionis, G., Brackstone, M., & Gravett, N. (2020). Microscopic modeling of the effects of autonomous vehicles on motorway performance. Transportation Research Record, 2674 (11), 697-707.
  • Osman, A. (2023). Evaluation of The Impact of Automated Driven Vehicles on Traffic Performance at Four-leg Signalized Intersections. In.
  • Paiva, S., Ahad, M. A., Tripathi, G., Feroz, N., & Casalino, G. (2021). Enabling technologies for urban smart mobility: Recent trends, opportunities and challenges. Sensors, 21(6), 2143.
  • Schrum, M. L., Sumner, E., Gombolay, M. C., & Best, A. (2024). Maveric: A data-driven approach to personalized autonomous driving. IEEE Transactions on Robotics.
  • Shahandasht, M., Pudasaini, B., & McCauley, S. L. (2019). Autonomous Vehicles and Freight Transportation Analysis. Department of Civil Engineering, The University of Texas at Arlington, 1-111.
  • Sperling, D. (2018). Three revolutions: Steering automated, shared, and electric vehicles to a better future. Island Press.
  • Sultana, S., Salon, D., & Kuby, M. (2021). Transportation sustainability in the urban context: A comprehensive review. Geographic Perspectives on Urban Sustainability, 13-42.
  • Ullah, M. R., Khattak, K. S., Khan, Z. H., Khan, M. A., Minallah, N., & Khan, A. N. (2021). Vehicular traffic simulation software: A systematic comparative analysis. Pakistan Journal of Engineering and Technology, 4(1), 66-78.
  • Van Brummelen, J., O’Brien, M., Gruyer, D., & Najjaran, H. (2018). Autonomous vehicle perception: The technology of today and tomorrow. Transportation Research Part C: Emerging Technologies, 89, 384-406.
  • Zhang, Y.-T., Chen, Y.-Z., Shi, C.-L., & Hu, M.-B. (2023). Impact of vehicle platoon on energy and emission in mixed traffic environment. International Journal of Modern Physics C, 2350136.
  • Zhao, B., Lin, Y., Hao, H., & Yao, Z. (2022). Fuel consumption and traffic emissions evaluation of mixed traffic flow with connected automated vehicles at multiple traffic scenarios. Journal of Advanced Transportation, 2022, 1-14.

Dönel Kavşakta Artan Trafik Hacminin Otonom Araçlar Üzerindeki Etkisi

Year 2024, Volume: 7 Issue: 2, 146 - 165, 22.10.2024
https://doi.org/10.51513/jitsa.1449009

Abstract

Bu çalışma, PTV VISSIM benzetim programını kullanarak, artan trafik hacimlerinin sürücülü araçlarla birlikte farklı davranış özelliklerine sahip otonom araçlar (AV'ler) üzerindeki etkisini araştırmayı amaçlamaktadır. Benzetimler, 100 ile 600 araç arasındaki çeşitli trafik yoğunluklarını içermekte ve seyahat süreleri, emisyonlar (CO, NOX, VOC) ve yakıt tüketimi üzerindeki etkilerini ölçmektedir. Sonuçlar, AV'lerin yayılım oranlarının artmasıyla birlikte genellikle seyahat sürelerinin azaldığını göstermektedir; agresif AV'ler en kısa süreleri elde ederken, bunu normal ve ardından dikkatli AV'ler takip etmektedir. Emisyonlar ve yakıt tüketimi de AV'lerin yayılım oranı arttıkça azalma eğilimi göstermektedir. Özellikle, agresif AV'lerin seyahat süresini azaltmada etkili olduğu, normal AV'lerin verimlilik ve azalan emisyonlar arasında tutarlı bir denge sağladığı ve dikkatli AV'lerin güvenlik ve düşük emisyonları vurguladığı görülmektedir. Davranış özelliklerindeki farklılıklara rağmen, tüm AV türleri geleneksel araçlara kıyasla belirgin bir iyileşme sergilemektedir. Her yayılım oranında, AV'ler daha kısa seyahat süreleri ve daha düşük emisyonlara yol açmaktadır; agresif AV'ler en verimli olurken, bunu normal ve ardından dikkatli AV'ler takip etmektedir. Bu bulgular, otonom araçların ulaşım ağlarına entegre edilmesinin potansiyel faydalarını vurgulamaktadır. Bu durum, hedeflere ve koşullara bağlı olarak AV davranışlarının optimize edilmesinin, daha verimli ve çevre dostu trafik sistemlerinin oluşmasına olanak tanıyabileceğini öne sürmektedir. Çalışma, her bir AV davranışının farklı güçlü yönlerinden yararlanarak otonom ulaşım için daha sürdürülebilir ve verimli bir gelecek yaratmayı amaçlayan politika yapıcılar, şehir planlamacıları ve araştırmacılar için değerli içgörüler sunmaktadır.

References

  • Alghamdi, T., Mostafi, S., Abdelkader, G., & Elgazzar, K. (2022). A comparative study on traffic modeling techniques for predicting and simulating traffic behavior. Future Internet, 14(10), 294.
  • Cao, H., & Zöldy, M. (2020). An investigation of autonomous vehicle roundabout situation. Periodica Polytechnica Transportation Engineering, 48(3), 236-241.
  • Dey, D., Martens, M., Eggen, B., & Terken, J. (2017). The impact of vehicle appearance and vehicle behavior on pedestrian interaction with autonomous vehicles. Proceedings of the 9th International Conference on Automotive User Interfaces and Interactive Vehicular Applications Adjunct.
  • Karjanto, J., Yusof, N., Terken, J., Hassan, M., Delbressine, F., van Huysduynen, H. H., & Rauterberg, G. (2017). The identification of Malaysian driving styles using the multidimensional driving style inventory. MATEC Web of Conferences.
  • Khreis, H., Warsow, K. M., Verlinghieri, E., Guzman, A., Pellecuer, L., Ferreira, A., Jones, I., Heinen, E., Rojas-Rueda, D., & Mueller, N. (2016). The health impacts of traffic-related exposures in urban areas: Understanding real effects, underlying driving forces and co-producing future directions. Journal of Transport & Health, 3(3), 249-267.
  • Maheshwari, T., & Axhausen, K. W. (2021). How will the technological shift in transportation impact cities? A review of quantitative studies on the impacts of new transportation technologies. Sustainability, 13(6), 3013.
  • Mesionis, G., Brackstone, M., & Gravett, N. (2020). Microscopic modeling of the effects of autonomous vehicles on motorway performance. Transportation Research Record, 2674 (11), 697-707.
  • Osman, A. (2023). Evaluation of The Impact of Automated Driven Vehicles on Traffic Performance at Four-leg Signalized Intersections. In.
  • Paiva, S., Ahad, M. A., Tripathi, G., Feroz, N., & Casalino, G. (2021). Enabling technologies for urban smart mobility: Recent trends, opportunities and challenges. Sensors, 21(6), 2143.
  • Schrum, M. L., Sumner, E., Gombolay, M. C., & Best, A. (2024). Maveric: A data-driven approach to personalized autonomous driving. IEEE Transactions on Robotics.
  • Shahandasht, M., Pudasaini, B., & McCauley, S. L. (2019). Autonomous Vehicles and Freight Transportation Analysis. Department of Civil Engineering, The University of Texas at Arlington, 1-111.
  • Sperling, D. (2018). Three revolutions: Steering automated, shared, and electric vehicles to a better future. Island Press.
  • Sultana, S., Salon, D., & Kuby, M. (2021). Transportation sustainability in the urban context: A comprehensive review. Geographic Perspectives on Urban Sustainability, 13-42.
  • Ullah, M. R., Khattak, K. S., Khan, Z. H., Khan, M. A., Minallah, N., & Khan, A. N. (2021). Vehicular traffic simulation software: A systematic comparative analysis. Pakistan Journal of Engineering and Technology, 4(1), 66-78.
  • Van Brummelen, J., O’Brien, M., Gruyer, D., & Najjaran, H. (2018). Autonomous vehicle perception: The technology of today and tomorrow. Transportation Research Part C: Emerging Technologies, 89, 384-406.
  • Zhang, Y.-T., Chen, Y.-Z., Shi, C.-L., & Hu, M.-B. (2023). Impact of vehicle platoon on energy and emission in mixed traffic environment. International Journal of Modern Physics C, 2350136.
  • Zhao, B., Lin, Y., Hao, H., & Yao, Z. (2022). Fuel consumption and traffic emissions evaluation of mixed traffic flow with connected automated vehicles at multiple traffic scenarios. Journal of Advanced Transportation, 2022, 1-14.
There are 17 citations in total.

Details

Primary Language English
Subjects Transportation Engineering
Journal Section Articles
Authors

Ali Almusawi 0000-0002-4507-2492

Mustafa Albdairi 0009-0002-6673-363X

Early Pub Date October 18, 2024
Publication Date October 22, 2024
Submission Date March 8, 2024
Acceptance Date May 6, 2024
Published in Issue Year 2024 Volume: 7 Issue: 2

Cite

APA Almusawi, A., & Albdairi, M. (2024). The Impact of Increasing Traffic Volume on Autonomous Vehicles in Roundabout. Akıllı Ulaşım Sistemleri Ve Uygulamaları Dergisi, 7(2), 146-165. https://doi.org/10.51513/jitsa.1449009