Research Article
BibTex RIS Cite

Factors Affecting the Integration of Micromobility into Smart Cities and Effects on Urban Transport

Year 2025, Volume: 8 Issue: 1, 170 - 183, 25.03.2025
https://doi.org/10.51513/jitsa.1603010

Abstract

In the transport of the future, the development of smart cities and the use of micromobility vehicles play an important role in terms of sustainability and efficiency. Micromobility vehicles such as electric scooters, bicycles and e-mopeds provide environmental, economic and social benefits by offering an important alternative in urban transport. However, many factors need to be considered for the successful integration of these vehicles. The aim of this paper is to analyse the main factors affecting the integration of micromobility vehicles into urban transport systems. In this paper, 9 sub-criteria under 6 main criteria affecting the integration of micromobility vehicles are considered and the relationships between these criteria are analysed by DEMATEL method. As a result of the analysis, the importance ranking of the criteria related to micromobility vehicles is determined as follows: roads reserved for micromobility vehicles, integration of micromobility vehicles with public transport, accidents, legislation deficiencies, lighting and signing, accessibility to micromobility vehicles, digital literacy level, effects of micromobility vehicles on environmental sustainability and fuel cost. The study makes an important contribution towards better understanding the impacts of micromobility vehicles on urban transport and identifying important factors to be considered in the integration process.

References

  • Aguilera-García, Á., Gómez, J., Sobrino, N. (2020). Exploring the adoption of moped scooter-sharing systems in spanish urban areas. Cities, 96, 102424. https://doi.org/10.1016/j.cities.2019.102424
  • Bajec, P., Tuljak-Suban, D., & Zalokar, E. (2021). A distance-based ahp-dea super-efficiency approach for selecting an electric bike sharing system provider: one step closer to sustainability and a win–win effect for all target groups. Sustainability, 13(2), 549. https://doi.org/10.3390/su13020549
  • Bylieva, D., Lobatyuk, V., & Shestakova, I. (2022). Shared micromobility: between physical and digital reality. Sustainability, 14(4), 2467. https://doi.org/10.3390/su14042467
  • Felipe-Falgas, P., Madrid‐López, C., Marquet, O. (2022). Assessing environmental performance of micromobility using lca and self-reported modal change: the case of shared e-bikes, e-scooters, and e-mopeds in barcelona. Sustainability, 14(7), 4139. https://doi.org/10.3390/su14074139
  • Flores, P. and Jansson, J. (2021). The role of consumer innovativeness and green perceptions on green innovation use: the case of shared e‐bikes and e‐scooters. Journal of Consumer Behaviour, 20(6), 1466-1479. https://doi.org/10.1002/cb.1957
  • Fonseca-Cabrera, A., Llopis-Castelló, D., Zuriaga, A., Alonso-Troyano, C., García, A. (2021). Micromobility users’ behaviour and perceived risk during meeting manoeuvres. International Journal of Environmental Research and Public Health, 18(23), 12465. https://doi.org/10.3390/ijerph182312465
  • Fontela, E., Gabus, A. (1974). DEMATEL, innovative methods. Report no. 2 structural analysis of the world problematique. Battelle Geneva Research Institute, 67-69.
  • Fontela, E., Gabus, A. (1976). The DEMATEL observer: Battelle Institute. Geneva Research Center, 56-61.
  • Güler, E., Avcı, S., Aladağ, Z. (2022). DEMATEL-SWARA yöntemleri ile geçisi barınma alanlarının seçimine etki eden kriterlerin değerlendirilmesi. UMUFED International Journal of Western Black Sea Engineering and Science, 4(2), 57-74.
  • Hassam, S., Alpalhão, N., Neto, M. (2024). A spatiotemporal comparative analysis of docked and dockless shared micromobility services. Smart Cities, 7(2), 880-912. https://doi.org/10.3390/smartcities7020037
  • Jafarzadehfadaki, M. and Sisiopiku, V. (2024). Embracing urban micromobility: a comparative study of e-scooter adoption in washington, d.c., miami, and los angeles. Urban Science, 8(2), 71. https://doi.org/10.3390/urbansci8020071
  • Karpinski, E., Bayles, E., Sanders, T. (2022). Safety analysis for micromobility: recommendations on risk metrics and data collection. Transportation Research Record Journal of the Transportation Research Board, 2676(12), 420-435. https://doi.org/10.1177/03611981221095523
  • Koçak, A. and Diyadin, A. (2018). Sanayi 4.0 geçiş süreçlerinde kritik başarı faktörlerinin DEMATEL yöntemi ile değerlendirilmesi. Ege academic review, 18(1), 107-120. https://doi.org/10.21121/eab.2018132203
  • Li, C.W., Tzeng, G.H. (2009). Identification of a threshold value for the DEMATEL method using the maximum mean de-entropy algorithm to find critical services provided by a semiconductor intellectual property mall. Expert Systems with Applications, 36: 9891–9898. https://doi.org/10.1016/j.eswa.2009.01.073
  • Marques, D. and Coelho, M. (2022). A literature review of emerging research needs for micromobility—integration through a life cycle thinking approach. Future Transportation, 2(1), 135-164. https://doi.org/10.3390/futuretransp2010008
  • McQueen, M., Abou-Zeid, G., MacArthur, J., Clifton, K. (2020). Transportation transformation: is micromobility making a macro impact on sustainability? Journal of Planning Literature, 36(1), 46-61. https://doi.org/10.1177/0885412220972696
  • Moch, N. and Wereda, W. (2020). Smart security in the smart city. Sustainability, 12(23), 9900. https://doi.org/10.3390/su12239900
  • Munhoz, P., Dias, F., Chinelli, C., Guedes, A., Santos, J., Silva, W., Soares, C. (2020). Smart mobility: the main drivers for increasing the intelligence of urban mobility. Sustainability, 12(24), 10675. https://doi.org/10.3390/su122410675
  • Nilashi, M., Zakaria, R., Ibrahim, O., Majid, M., Zin, R., ve Farahmand, M. (2015). MCPCM: A DEMATEL-ANPBased Multi-Criteria Decision-Making Approach to Evaluate the Critical Success Factors in Construction Projects. Arabian Journal for Science and Engineering, 40(2): 343-361. https://doi.org/10.1007/s13369-014-1529-1
  • Pérez-Zuriaga, A., Llopis-Castelló, D., Just-Martínez, V., Fonseca-Cabrera, A., Alonso-Troyano, C., García, A. (2022). Implementation of a low-cost data acquisition system on an e-scooter for micromobility research. Sensors, 22(21), 8215. https://doi.org/10.3390/s22218215
  • Rześny-Cieplińska, J., Tomaszewski, T., Piecyk-Ouellet, M., Kiba-Janiak, M. (2023). Emerging trends for urban freight transport–the potential for sustainable micromobility. Plos One, 18(9), e0289915. https://doi.org/10.1371/journal.pone.0289915
  • Sanjurjo-de-No, A. (2023). Factors influencing the pedestrian injury severity of micromobility crashes. Sustainability, 15(19), 14348. https://doi.org/10.3390/su151914348
  • Štefancová, V., Kalašová, A., Čulík, K., Mazanec, J., Vojtek, M., Masek, J. (2022). Research on the impact of covid-19 on micromobility using statistical methods. Applied Sciences, 12(16), 8128. https://doi.org/10.3390/app12168128
  • Stehlin, J. and Payne, W. (2022). Disposable infrastructures: ‘micromobility’ platforms and the political economy of transport disruption in austin, texas. Urban Studies, 60(2), 274-291. https://doi.org/10.1177/00420980221091486
  • Sun, S. and Ertz, M. (2022). Can shared micromobility programs reduce greenhouse gas emissions: evidence from urban transportation big data. Sustainable Cities and Society, 85, 104045. https://doi.org/10.1016/j.scs.2022.104045
  • Tamagusko, T., Correia, M., Rita, L., Bostan, T., Peliteiro, M., Martins, R., Ferreira, A. (2023). Data-driven approach for urban micromobility enhancement through safety mapping and intelligent route planning. Smart Cities, 6(4), 2035-2056. https://doi.org/10.3390/smartcities6040094
  • Wu W., Lee, Y. (2007). Developing global managers’ competencies using the fuzzy DEMATEl method. Expert Syst. Appl., 32(2), ss. 499-507. https://doi.org/10.1016/j.eswa.2005.12.005

Mikromobilitenin Akıllı Şehirlere Entegrasyonunu Etkileyen Faktörler ve Şehir İçi Ulaşıma Etkileri

Year 2025, Volume: 8 Issue: 1, 170 - 183, 25.03.2025
https://doi.org/10.51513/jitsa.1603010

Abstract

Geleceğin ulaşımında, akıllı şehirlerin gelişimi ve mikromobilite araçlarının kullanımı, sürdürülebilirlik ve verimlilik açısından önemli bir rol oynamaktadır. Elektrikli scooter, bisiklet ve e-moped gibi mikromobilite araçları, şehir içi ulaşımda önemli bir alternatif sunarak çevresel, ekonomik ve toplumsal faydalar sağlamaktadır. Ancak, bu araçların başarılı entegrasyonu için birçok faktörün dikkate alınması gerekmektedir. Bu makalenin amacı, mikromobilite araçlarının şehir içi ulaşım sistemlerine entegrasyonunu etkileyen temel faktörleri analiz etmektir. Makalede, mikromobilite araçlarının entegrasyonunu şekillendiren 6 ana kriter altında 9 alt kriter ele alınmış ve bu kriterler arasındaki ilişkiler DEMATEL yöntemi ile incelenmiştir. Analiz sonucunda, mikromobilite araçlarıyla ilgili kriterlerin önem sıralaması şu şekilde belirlenmiştir: mikromobilite araçları için ayrılmış yollar, mikromobilite araçlarının toplu taşıma ile entegrasyonu, kazalar, mevzuat eksiklikleri, ışıklandırma ve işaretlendirmeler, mikromobilite araçlara erişilebilirlik, dijital okuryazarlık seviyesi mikromobilite araçlarının çevresel sürdürülebilirliğe etkileri ve yakıt maliyetidir. Çalışma, mikromobilite araçlarının şehir içi ulaşım üzerindeki etkilerini daha iyi anlamaya ve entegrasyon sürecinde dikkate alınması gereken önemli faktörleri belirlemeye yönelik önemli bir katkı sunmaktadır.

References

  • Aguilera-García, Á., Gómez, J., Sobrino, N. (2020). Exploring the adoption of moped scooter-sharing systems in spanish urban areas. Cities, 96, 102424. https://doi.org/10.1016/j.cities.2019.102424
  • Bajec, P., Tuljak-Suban, D., & Zalokar, E. (2021). A distance-based ahp-dea super-efficiency approach for selecting an electric bike sharing system provider: one step closer to sustainability and a win–win effect for all target groups. Sustainability, 13(2), 549. https://doi.org/10.3390/su13020549
  • Bylieva, D., Lobatyuk, V., & Shestakova, I. (2022). Shared micromobility: between physical and digital reality. Sustainability, 14(4), 2467. https://doi.org/10.3390/su14042467
  • Felipe-Falgas, P., Madrid‐López, C., Marquet, O. (2022). Assessing environmental performance of micromobility using lca and self-reported modal change: the case of shared e-bikes, e-scooters, and e-mopeds in barcelona. Sustainability, 14(7), 4139. https://doi.org/10.3390/su14074139
  • Flores, P. and Jansson, J. (2021). The role of consumer innovativeness and green perceptions on green innovation use: the case of shared e‐bikes and e‐scooters. Journal of Consumer Behaviour, 20(6), 1466-1479. https://doi.org/10.1002/cb.1957
  • Fonseca-Cabrera, A., Llopis-Castelló, D., Zuriaga, A., Alonso-Troyano, C., García, A. (2021). Micromobility users’ behaviour and perceived risk during meeting manoeuvres. International Journal of Environmental Research and Public Health, 18(23), 12465. https://doi.org/10.3390/ijerph182312465
  • Fontela, E., Gabus, A. (1974). DEMATEL, innovative methods. Report no. 2 structural analysis of the world problematique. Battelle Geneva Research Institute, 67-69.
  • Fontela, E., Gabus, A. (1976). The DEMATEL observer: Battelle Institute. Geneva Research Center, 56-61.
  • Güler, E., Avcı, S., Aladağ, Z. (2022). DEMATEL-SWARA yöntemleri ile geçisi barınma alanlarının seçimine etki eden kriterlerin değerlendirilmesi. UMUFED International Journal of Western Black Sea Engineering and Science, 4(2), 57-74.
  • Hassam, S., Alpalhão, N., Neto, M. (2024). A spatiotemporal comparative analysis of docked and dockless shared micromobility services. Smart Cities, 7(2), 880-912. https://doi.org/10.3390/smartcities7020037
  • Jafarzadehfadaki, M. and Sisiopiku, V. (2024). Embracing urban micromobility: a comparative study of e-scooter adoption in washington, d.c., miami, and los angeles. Urban Science, 8(2), 71. https://doi.org/10.3390/urbansci8020071
  • Karpinski, E., Bayles, E., Sanders, T. (2022). Safety analysis for micromobility: recommendations on risk metrics and data collection. Transportation Research Record Journal of the Transportation Research Board, 2676(12), 420-435. https://doi.org/10.1177/03611981221095523
  • Koçak, A. and Diyadin, A. (2018). Sanayi 4.0 geçiş süreçlerinde kritik başarı faktörlerinin DEMATEL yöntemi ile değerlendirilmesi. Ege academic review, 18(1), 107-120. https://doi.org/10.21121/eab.2018132203
  • Li, C.W., Tzeng, G.H. (2009). Identification of a threshold value for the DEMATEL method using the maximum mean de-entropy algorithm to find critical services provided by a semiconductor intellectual property mall. Expert Systems with Applications, 36: 9891–9898. https://doi.org/10.1016/j.eswa.2009.01.073
  • Marques, D. and Coelho, M. (2022). A literature review of emerging research needs for micromobility—integration through a life cycle thinking approach. Future Transportation, 2(1), 135-164. https://doi.org/10.3390/futuretransp2010008
  • McQueen, M., Abou-Zeid, G., MacArthur, J., Clifton, K. (2020). Transportation transformation: is micromobility making a macro impact on sustainability? Journal of Planning Literature, 36(1), 46-61. https://doi.org/10.1177/0885412220972696
  • Moch, N. and Wereda, W. (2020). Smart security in the smart city. Sustainability, 12(23), 9900. https://doi.org/10.3390/su12239900
  • Munhoz, P., Dias, F., Chinelli, C., Guedes, A., Santos, J., Silva, W., Soares, C. (2020). Smart mobility: the main drivers for increasing the intelligence of urban mobility. Sustainability, 12(24), 10675. https://doi.org/10.3390/su122410675
  • Nilashi, M., Zakaria, R., Ibrahim, O., Majid, M., Zin, R., ve Farahmand, M. (2015). MCPCM: A DEMATEL-ANPBased Multi-Criteria Decision-Making Approach to Evaluate the Critical Success Factors in Construction Projects. Arabian Journal for Science and Engineering, 40(2): 343-361. https://doi.org/10.1007/s13369-014-1529-1
  • Pérez-Zuriaga, A., Llopis-Castelló, D., Just-Martínez, V., Fonseca-Cabrera, A., Alonso-Troyano, C., García, A. (2022). Implementation of a low-cost data acquisition system on an e-scooter for micromobility research. Sensors, 22(21), 8215. https://doi.org/10.3390/s22218215
  • Rześny-Cieplińska, J., Tomaszewski, T., Piecyk-Ouellet, M., Kiba-Janiak, M. (2023). Emerging trends for urban freight transport–the potential for sustainable micromobility. Plos One, 18(9), e0289915. https://doi.org/10.1371/journal.pone.0289915
  • Sanjurjo-de-No, A. (2023). Factors influencing the pedestrian injury severity of micromobility crashes. Sustainability, 15(19), 14348. https://doi.org/10.3390/su151914348
  • Štefancová, V., Kalašová, A., Čulík, K., Mazanec, J., Vojtek, M., Masek, J. (2022). Research on the impact of covid-19 on micromobility using statistical methods. Applied Sciences, 12(16), 8128. https://doi.org/10.3390/app12168128
  • Stehlin, J. and Payne, W. (2022). Disposable infrastructures: ‘micromobility’ platforms and the political economy of transport disruption in austin, texas. Urban Studies, 60(2), 274-291. https://doi.org/10.1177/00420980221091486
  • Sun, S. and Ertz, M. (2022). Can shared micromobility programs reduce greenhouse gas emissions: evidence from urban transportation big data. Sustainable Cities and Society, 85, 104045. https://doi.org/10.1016/j.scs.2022.104045
  • Tamagusko, T., Correia, M., Rita, L., Bostan, T., Peliteiro, M., Martins, R., Ferreira, A. (2023). Data-driven approach for urban micromobility enhancement through safety mapping and intelligent route planning. Smart Cities, 6(4), 2035-2056. https://doi.org/10.3390/smartcities6040094
  • Wu W., Lee, Y. (2007). Developing global managers’ competencies using the fuzzy DEMATEl method. Expert Syst. Appl., 32(2), ss. 499-507. https://doi.org/10.1016/j.eswa.2005.12.005
There are 27 citations in total.

Details

Primary Language English
Subjects Transportation and Traffic
Journal Section Articles
Authors

Nuriye Kabakuş 0000-0002-8479-6733

Merve Eyüboğlu 0000-0002-7008-3150

Early Pub Date March 19, 2025
Publication Date March 25, 2025
Submission Date December 17, 2024
Acceptance Date March 3, 2025
Published in Issue Year 2025 Volume: 8 Issue: 1

Cite

APA Kabakuş, N., & Eyüboğlu, M. (2025). Factors Affecting the Integration of Micromobility into Smart Cities and Effects on Urban Transport. Akıllı Ulaşım Sistemleri Ve Uygulamaları Dergisi, 8(1), 170-183. https://doi.org/10.51513/jitsa.1603010