Research Article
BibTex RIS Cite

Advanced Multi-Robot Path Planning Based on Grey Wolf and Teaching-Learning Based Optimisation

Year 2025, Volume: 8 Issue: 1, 204 - 222, 25.03.2025
https://doi.org/10.51513/jitsa.1608792

Abstract

Multi-robots stand out for their flexibility, scalability, and robustness in complex tasks by collaborating. Rather than a single robot undertaking a task, many robots can perform one or more tasks, which increases the task efficiency. Mobile robots require path planning to reach the targeted locations while working in areas such as service, logistics, agriculture, and production. This situation is also valid for multi-robots. In this study, an advanced multi-robot path planning method adapted to the path planning of multi-robots is proposed by combining the advantageous aspects of the Grey Wolf Optimization algorithm and the Teaching and Learning Based Optimization algorithm for the path planning of multi-robots. The proposed method was compared with other algorithms. Simulations containing combinations of population numbers, robot numbers, and different environments were applied. The proposed method shows high performance compared to other methods in simulations applied to the multi-robot path-planning problem. According to the comparison results, the proposed method showed high performance in terms of parameter results, such as reaching a faster solution, closing to the target, and total fitness values used in the evaluation of the robot team.

References

  • Abujabal, N., Fareh, R., Sinan, S., Baziyad, M., & Bettayeb, M. (2023). A comprehensive review of the latest path planning developments for multi-robot formation systems. Robotica, 41(7), 2079–2104. https://doi.org/10.1017/S0263574723000322
  • Apuroop, K. G. S., Le, A. V., Elara, M. R., & Sheu, B. J. (2021). Reinforcement Learning-Based Complete Area Coverage Path Planning for a Modified hTrihex Robot. Sensors 2021, Vol. 21, Page 1067, 21(4), 1067. https://doi.org/10.3390/S21041067
  • Cao, Y., Long, T., Sun, J., Wang, Z., & Xu, G. (2023). Comparison of Distributed Task Allocation Algorithms Considering Non-ideal Communication Factors for Multi-UAV Collaborative Visit Missions. IEEE Robotics and Automation Letters. https://doi.org/10.1109/LRA.2023.3295999
  • Chakraa, H., Guérin, F., Leclercq, E., & Lefebvre, D. (2023). Optimization techniques for Multi-Robot Task Allocation problems: Review on the state-of-the-art. Robotics and Autonomous Systems, 168, 104492. https://doi.org/10.1016/J.ROBOT.2023.104492
  • Cui, Y., Hu, W., & Rahmani, A. (2024). Multi-robot path planning using learning-based Artificial Bee Colony algorithm. Engineering Applications of Artificial Intelligence, 129, 107579. https://doi.org/10.1016/J.ENGAPPAI.2023.107579
  • Dong, L., Yuan, X., Yan, B., Song, Y., Xu, Q., & Yang, X. (2022). An Improved Grey Wolf Optimization with Multi-Strategy Ensemble for Robot Path Planning. Sensors 2022, Vol. 22, Page 6843, 22(18), 6843. https://doi.org/10.3390/S22186843
  • Heselden, J. R., & Das, G. P. (2023). Heuristics and Rescheduling in Prioritised Multi-Robot Path Planning: A Literature Review. Machines 2023, Vol. 11, Page 1033, 11(11), 1033. https://doi.org/10.3390/MACHINES11111033
  • Jiaqi, S., Li, T., Hongtao, Z., Xiaofeng, L., & Tianying, X. (2022). Adaptive multi-UAV path planning method based on improved gray wolf algorithm. Computers and Electrical Engineering, 104, 108377. https://doi.org/10.1016/J.COMPELECENG.2022.108377
  • Keskin, M. O., Cantürk, F., Eran, C., & Aydoğan, R. (2024). Decentralized multi-agent path finding framework and strategies based on automated negotiation. Autonomous Agents and Multi-Agent Systems, 38(1), 1–30. https://doi.org/10.1007/S10458-024-09639-8/TABLES/4
  • Kumar, S., & Sikander, A. (2024). A novel hybrid framework for single and multi-robot path planning in a complex industrial environment. Journal of Intelligent Manufacturing, 35(2), 587–612. https://doi.org/10.1007/S10845-022-02056-2/FIGURES/23
  • Li, J., & Yang, F. (2020). Task assignment strategy for multi-robot based on improved Grey Wolf Optimizer. Journal of Ambient Intelligence and Humanized Computing, 11(12), 6319–6335. https://doi.org/10.1007/S12652-020-02224-3/TABLES/2
  • Lin, S. ;, Liu, A. ;, Wang, J. ;, Kong, X., Lin, S., Liu, A., Wang, J., & Kong, X. (2022). A Review of Path-Planning Approaches for Multiple Mobile Robots. Machines 2022, Vol. 10, Page 773, 10(9), 773. https://doi.org/10.3390/MACHINES10090773
  • Liu, L., Li, L., Nian, H., Lu, Y., Zhao, H., & Chen, Y. (2023). Enhanced Grey Wolf Optimization Algorithm for Mobile Robot Path Planning. Electronics 2023, Vol. 12, Page 4026, 12(19), 4026. https://doi.org/10.3390/ELECTRONICS12194026
  • Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey Wolf Optimizer. Advances in Engineering Software, 69, 46–61. https://doi.org/10.1016/J.ADVENGSOFT.2013.12.007
  • Mittal, H., Pandey, A. C., Saraswat, M., Kumar, S., Pal, R., & Modwel, G. (2022). A comprehensive survey of image segmentation: clustering methods, performance parameters, and benchmark datasets. Multimedia Tools and Applications, 81(24), 35001–35026. https://doi.org/10.1007/S11042-021-10594-9/TABLES/6
  • Nedjah, N., & Junior, L. S. (2019). Review of methodologies and tasks in swarm robotics towards standardization. Swarm and Evolutionary Computation, 50, 100565. https://doi.org/10.1016/j.swevo.2019.100565
  • Ou, Y., Yin, P., & Mo, L. (2023). An Improved Grey Wolf Optimizer and Its Application in Robot Path Planning. Biomimetics 2023, Vol. 8, Page 84, 8(1), 84. https://doi.org/10.3390/BIOMIMETICS8010084
  • Qin, H., Shao, S., Wang, T., Yu, X., Jiang, Y., & Cao, Z. (2023). Review of Autonomous Path Planning Algorithms for Mobile Robots. Drones 2023, Vol. 7, Page 211, 7(3), 211. https://doi.org/10.3390/DRONES7030211
  • Rao, R. V. (2016). Teaching-Learning-Based Optimization Algorithm. Teaching Learning Based Optimization Algorithm, 9–39. https://doi.org/10.1007/978-3-319-22732-0_2
  • Rao, R. V., Savsani, V. J., & Vakharia, D. P. (2011). Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems. Computer-Aided Design, 43(3), 303–315. https://doi.org/10.1016/J.CAD.2010.12.015
  • Shoeib, M. A., Lewandowski, J., & Omara, A. M. (2024). A novel methodology for vision-based path planning and obstacle avoidance in mobile robot applications. Advanced Robotics, 38(12), 802–817. https://doi.org/10.1080/01691864.2024.2315591
  • Sim, J., Kim, J., & Nam, C. (2024). Safe Interval RRT* for Scalable Multi-Robot Path Planning in Continuous Space. CoRR. https://doi.org/10.48550/ARXIV.2404.01752
  • Tan, C. S., Mohd-Mokhtar, R., & Arshad, M. R. (2021). A Comprehensive Review of Coverage Path Planning in Robotics Using Classical and Heuristic Algorithms. IEEE Access, 9, 119310–119342. https://doi.org/10.1109/ACCESS.2021.3108177
  • Zhu, K., & Zhang, T. (2021). Deep reinforcement learning based mobile robot navigation: A review. Tsinghua Science and Technology, 26(5), 674–691. https://doi.org/10.26599/TST.2021.9010012

Gri Kurt ve Öğretme-Öğrenme Tabanlı Optimizasyona Dayalı Gelişmiş Çoklu-Robot Yol Planlaması

Year 2025, Volume: 8 Issue: 1, 204 - 222, 25.03.2025
https://doi.org/10.51513/jitsa.1608792

Abstract

Çoklu robotlar, işbirliği yaparak karmaşık görevlerde esneklik, ölçeklenebilirlik ve gürbüzlük özellikleriyle ön plana çıkmaktadır. Tek bir robotun bir görevi üstlenmesinden ziyade birçok robot bir veya birden fazla görevi üstlenebilir ve bu durum görev verimliliğini artırmaktadır. Mobil robotların servis, lojistik, tarım, üretim gibi alanlarda görev alırken hedeflenen konumlara gidebilmeleri için bir yol planlamasına ihtiyaç duyarlar. Bu durum çoklu robotlar içinde geçerlidir. Bu çalışmada Çoklu robotların yol planlaması için Gri Kurt Optimizasyonu algoritması ile Öğretme ve Öğrenme Tabanlı optimizasyon algoritmasının avantajlı yönleri birleştirilerek çoklu robotların yol planlamasına uyarlanan gelişmiş çoklu robot yol planlaması yöntemi önerilmektedir. Önerilen gri kurt optimizasyon tabanlı diğer algoritmalar ile karşılaştırılmaktadır. Popülasyon sayısı, robot sayısı ve farklı ortamlar kombinasyonlarını içeren simülasyonlar uygulanmıştır. Önerilen yöntem, çoklu robot yol planlaması probleminde uygulanan simülasyonlarda diğer yöntemlere kıyasla yüksek performans göstermektedir. Karşılaştırma sonuçlarına göre önerilen yöntem, daha hızlı çözüme ulaşma, hedefe yakınsama ve robot takımının değerlendirilmesinde kullanılan toplam uygunluk değerleri gibi parametre sonuçlarında yüksek performans göstermiştir.

References

  • Abujabal, N., Fareh, R., Sinan, S., Baziyad, M., & Bettayeb, M. (2023). A comprehensive review of the latest path planning developments for multi-robot formation systems. Robotica, 41(7), 2079–2104. https://doi.org/10.1017/S0263574723000322
  • Apuroop, K. G. S., Le, A. V., Elara, M. R., & Sheu, B. J. (2021). Reinforcement Learning-Based Complete Area Coverage Path Planning for a Modified hTrihex Robot. Sensors 2021, Vol. 21, Page 1067, 21(4), 1067. https://doi.org/10.3390/S21041067
  • Cao, Y., Long, T., Sun, J., Wang, Z., & Xu, G. (2023). Comparison of Distributed Task Allocation Algorithms Considering Non-ideal Communication Factors for Multi-UAV Collaborative Visit Missions. IEEE Robotics and Automation Letters. https://doi.org/10.1109/LRA.2023.3295999
  • Chakraa, H., Guérin, F., Leclercq, E., & Lefebvre, D. (2023). Optimization techniques for Multi-Robot Task Allocation problems: Review on the state-of-the-art. Robotics and Autonomous Systems, 168, 104492. https://doi.org/10.1016/J.ROBOT.2023.104492
  • Cui, Y., Hu, W., & Rahmani, A. (2024). Multi-robot path planning using learning-based Artificial Bee Colony algorithm. Engineering Applications of Artificial Intelligence, 129, 107579. https://doi.org/10.1016/J.ENGAPPAI.2023.107579
  • Dong, L., Yuan, X., Yan, B., Song, Y., Xu, Q., & Yang, X. (2022). An Improved Grey Wolf Optimization with Multi-Strategy Ensemble for Robot Path Planning. Sensors 2022, Vol. 22, Page 6843, 22(18), 6843. https://doi.org/10.3390/S22186843
  • Heselden, J. R., & Das, G. P. (2023). Heuristics and Rescheduling in Prioritised Multi-Robot Path Planning: A Literature Review. Machines 2023, Vol. 11, Page 1033, 11(11), 1033. https://doi.org/10.3390/MACHINES11111033
  • Jiaqi, S., Li, T., Hongtao, Z., Xiaofeng, L., & Tianying, X. (2022). Adaptive multi-UAV path planning method based on improved gray wolf algorithm. Computers and Electrical Engineering, 104, 108377. https://doi.org/10.1016/J.COMPELECENG.2022.108377
  • Keskin, M. O., Cantürk, F., Eran, C., & Aydoğan, R. (2024). Decentralized multi-agent path finding framework and strategies based on automated negotiation. Autonomous Agents and Multi-Agent Systems, 38(1), 1–30. https://doi.org/10.1007/S10458-024-09639-8/TABLES/4
  • Kumar, S., & Sikander, A. (2024). A novel hybrid framework for single and multi-robot path planning in a complex industrial environment. Journal of Intelligent Manufacturing, 35(2), 587–612. https://doi.org/10.1007/S10845-022-02056-2/FIGURES/23
  • Li, J., & Yang, F. (2020). Task assignment strategy for multi-robot based on improved Grey Wolf Optimizer. Journal of Ambient Intelligence and Humanized Computing, 11(12), 6319–6335. https://doi.org/10.1007/S12652-020-02224-3/TABLES/2
  • Lin, S. ;, Liu, A. ;, Wang, J. ;, Kong, X., Lin, S., Liu, A., Wang, J., & Kong, X. (2022). A Review of Path-Planning Approaches for Multiple Mobile Robots. Machines 2022, Vol. 10, Page 773, 10(9), 773. https://doi.org/10.3390/MACHINES10090773
  • Liu, L., Li, L., Nian, H., Lu, Y., Zhao, H., & Chen, Y. (2023). Enhanced Grey Wolf Optimization Algorithm for Mobile Robot Path Planning. Electronics 2023, Vol. 12, Page 4026, 12(19), 4026. https://doi.org/10.3390/ELECTRONICS12194026
  • Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey Wolf Optimizer. Advances in Engineering Software, 69, 46–61. https://doi.org/10.1016/J.ADVENGSOFT.2013.12.007
  • Mittal, H., Pandey, A. C., Saraswat, M., Kumar, S., Pal, R., & Modwel, G. (2022). A comprehensive survey of image segmentation: clustering methods, performance parameters, and benchmark datasets. Multimedia Tools and Applications, 81(24), 35001–35026. https://doi.org/10.1007/S11042-021-10594-9/TABLES/6
  • Nedjah, N., & Junior, L. S. (2019). Review of methodologies and tasks in swarm robotics towards standardization. Swarm and Evolutionary Computation, 50, 100565. https://doi.org/10.1016/j.swevo.2019.100565
  • Ou, Y., Yin, P., & Mo, L. (2023). An Improved Grey Wolf Optimizer and Its Application in Robot Path Planning. Biomimetics 2023, Vol. 8, Page 84, 8(1), 84. https://doi.org/10.3390/BIOMIMETICS8010084
  • Qin, H., Shao, S., Wang, T., Yu, X., Jiang, Y., & Cao, Z. (2023). Review of Autonomous Path Planning Algorithms for Mobile Robots. Drones 2023, Vol. 7, Page 211, 7(3), 211. https://doi.org/10.3390/DRONES7030211
  • Rao, R. V. (2016). Teaching-Learning-Based Optimization Algorithm. Teaching Learning Based Optimization Algorithm, 9–39. https://doi.org/10.1007/978-3-319-22732-0_2
  • Rao, R. V., Savsani, V. J., & Vakharia, D. P. (2011). Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems. Computer-Aided Design, 43(3), 303–315. https://doi.org/10.1016/J.CAD.2010.12.015
  • Shoeib, M. A., Lewandowski, J., & Omara, A. M. (2024). A novel methodology for vision-based path planning and obstacle avoidance in mobile robot applications. Advanced Robotics, 38(12), 802–817. https://doi.org/10.1080/01691864.2024.2315591
  • Sim, J., Kim, J., & Nam, C. (2024). Safe Interval RRT* for Scalable Multi-Robot Path Planning in Continuous Space. CoRR. https://doi.org/10.48550/ARXIV.2404.01752
  • Tan, C. S., Mohd-Mokhtar, R., & Arshad, M. R. (2021). A Comprehensive Review of Coverage Path Planning in Robotics Using Classical and Heuristic Algorithms. IEEE Access, 9, 119310–119342. https://doi.org/10.1109/ACCESS.2021.3108177
  • Zhu, K., & Zhang, T. (2021). Deep reinforcement learning based mobile robot navigation: A review. Tsinghua Science and Technology, 26(5), 674–691. https://doi.org/10.26599/TST.2021.9010012
There are 24 citations in total.

Details

Primary Language English
Subjects Autonomous Vehicle Systems
Journal Section Articles
Authors

Oğuz Mısır 0000-0002-3785-1795

Early Pub Date March 19, 2025
Publication Date March 25, 2025
Submission Date December 28, 2024
Acceptance Date February 19, 2025
Published in Issue Year 2025 Volume: 8 Issue: 1

Cite

APA Mısır, O. (2025). Advanced Multi-Robot Path Planning Based on Grey Wolf and Teaching-Learning Based Optimisation. Akıllı Ulaşım Sistemleri Ve Uygulamaları Dergisi, 8(1), 204-222. https://doi.org/10.51513/jitsa.1608792