Research Article
BibTex RIS Cite

Highlights for the Research Involving the Lactation Period in Laboratory Rats

Year 2023, , 45 - 50, 27.09.2023
https://doi.org/10.5152/JLASP.2023.23008

Abstract

Lactation is an important period in newborn nutrition since nutritional factors in the early stages of development have life-long impacts. Lactation provides various important long-lasting health benefits to the offspring. The lactation period, however, provides much more than just nutrients. The composition and quantity of nutrients in breast milk are not the only factors that can influence offsprings during breastfeeding. Maternal behaviors to nourish and protect her litters during lactation are also important in programing. The current study attempted to focus on specific characteristics of the breastfeeding period, such as changes in food consumption, mother’s weight, and the time dams spend lactating with or without pups. A deeper understanding of this critical period will allow for designing better pediatric models including maternal separation, artificial rearing, and studies covering maternal manipulations.

References

  • 1. Ballard, O., & Morrow, A. L. (2013). Human milk composition: Nutrients and bioactive factors. Pediatric Clinics of North America, 60(1), 49–74. [CrossRef]
  • 2. Barker, D. J. (1990). The fetal and infant origins of adult disease. BMJ, 301(6761), 1111. [CrossRef]
  • 3. Bauman, D. E., & Bruce Currie, W. B. (1980). Partitioning of nutrients during pregnancy and lactation: A review of mechanisms involving homeostasis and homeorhesis. Journal of Dairy Science, 63(9), 1514–1529. [CrossRef]
  • 4. Bautista, C. J., Bautista, R. J., Montaño, S., Reyes-Castro, L. A., Rodriguez Peña, O. N., Ibáñez, C. A., Nathanielsz, P. W., & Zambrano, E. (2019). Effects of maternal protein restriction during pregnancy and lactation on milk composition and offspring development. British Journal of Nutrition, 122(2), 141–151. [CrossRef]
  • 5. Bautista, C. J., Boeck, L., Larrea, F., Nathanielsz, P. W., & Zambrano, E. (2008). Effects of a maternal low protein isocaloric diet on milk leptin and progeny serum leptin concentration and appetitive behavior in the first 21 days of neonatal life in the rat. Pediatric Research, 63(4), 358–363. [CrossRef]
  • 6. de Waard, M., Brands, B., Kouwenhoven, S. M. P., Lerma, J. C., Crespo Escobar, P., Koletzko, B., Zalewski, B. M., & van Goudoever, J. B. (2017). Optimal nutrition in lactating women and its effect on later health of offspring: A systematic review of current evidence and recommendations (EarlyNutrition project). Critical Reviews in Food Science and Nutrition, 57(18), 4003–4016. [CrossRef]
  • 7. Fields, D. A., Schneider, C. R., & Pavela, G. (2016). A narrative review of the associations between six bioactive components in breast milk and infant adiposity. Obesity, 24(6), 1213–1221. [CrossRef]
  • 8. Forsdahl, A. (1977). Are poor living conditions in childhood and adolescence an important risk factor for arteriosclerotic heart disease? British Journal of Preventive and Social Medicine, 31(2), 91–95. [CrossRef]
  • 9. Gunderson, E. P., Lewis, C. E., Lin, Y., Sorel, M., Gross, M., Sidney, S., Jacobs, D. R., Shikany, J. M., & Quesenberry, C. P. (2018). Lactation duration and progression to diabetes in women across the childbearing years: The 30-year CARDIA study. JAMA Internal Medicine, 178(3), 328–337. [CrossRef]
  • 10. Li, C., Jenkins, S., Considine, M. M., Cox, L. A., Gerow, K. G., Huber, H. F., & Nathanielsz, P. W. (2019). Effect of maternal obesity on fetal and postnatal baboon (Papio Species) early life phenotype. Journal of Medical Primatology, 48(2): 90–98. (doi: [CrossRef]
  • 11. Martin, C. R., Ling, P. R., & Blackburn, G. L. (2016). Review of infant feeding: Key features of breast milk and infant formula. Nutrients, 8(5), 279. [CrossRef]
  • 12. Power, M. L., & Schulkin, J. (2013). Maternal regulation of offspring development in mammals is an ancient adaptation tied to lactation. Applied and Translational Genomics, 2, 55–63. [CrossRef]
  • 13. Qasim, A., Turcotte, M., de Souza, R. J., Samaan, M. C., Champredon, D., Dushoff, J., Speakman, J. R., & Meyre, D. (2018). On the origin of obesity: Identifying the biological, environmental and cultural drivers of genetic risk among human populations. Obesity Reviews, 19(2), 121–149. [CrossRef]
  • 14. Ramos, R. G., & Olden, K. (2008). Gene-environment interactions in the development of complex disease phenotypes. International Journal of Environmental Research and Public Health, 5(1), 4–11. [CrossRef]
  • 15. Ruiz, L., Espinosa-Martos, I., García-Carral, C., Manzano, S., McGuire, M. K., Meehan, C. L., McGuire, M. A., Williams, J. E., Foster, J., Sellen, D. W., Kamau-Mbuthia, E. W., Kamundia, E. W., Mbugua, S., Moore, S. E., Kvist, L. J., Otoo, G. E., Lackey, K. A., Flores, K., Pareja, R. G., Bode, L. … Rodríguez, J. M. (2017). What’s normal? Immune profiling of human milk from healthy women living in different geographical and socioeconomic settings. Frontiers in Immunology, 8, 696. [CrossRef]
  • 16. Sinclair, K. D., Rutherford, K. M. D., Wallace, J. M., Brameld, J. M., Stöger, R., Alberio, R., Sweetman, D., Gardner, D. S., Perry, V. E. A., Adam, C. L., Ashworth, C. J., Robinson, J. E., & Dwyer, C. M. (2016). Epigenetics and developmental programming of welfare and production traits in farm animals. Reproduction, Fertility, and Development, 28(10), 1443. [CrossRef]
  • 17. Suzuki, K. (2018). The developing world of DOHaD. Journal of Develop mental Origins of Health and Disease, 9(3), 266–269. [CrossRef] Victora, C. G., Bahl, R., Barros, A. J. D., França, G. V. A., Horton, S., Krasevec, J., Murch, S., Sankar, M. J., Walker, N., Rollins, N. C., & Lancet Breast feeding Series Group (2016). Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. Lancet, 387(10017), 475–490. [CrossRef]
  • 18. Vieau, D. (2011). Perinatal nutritional programming of health and metabolic adult disease. World Journal of Diabetes, 2(9), 133–136. [CrossRef]
  • 19. Wang, Q., Zhu, Chaoqun, Sun, M., Maimaiti, R., Ford, S. P., Nathanielsz, P. W., Ren, J., & Guo, W. (2019). Maternal obesity impairs fetal cardiomyocyte contractile function in sheep. FASEB Journal, 33(2), 2587–2598. [CrossRef]
  • 20. Wu, X., Jackson, R. T., Khan, Saira A., Ahuja, J., & Pehrsson, P. R. (2018). Human milk nutrient composition in the United States: Current knowledge, challenges, and research needs. Current Developments in Nutrition, 2(7), nzy025. [CrossRef]
  • 21. Zambrano, E., & Nathanielsz, P. W. (2013). Mechanisms by which maternal obesity programs offspring for obesity: Evidence from animal studies. Nutrition Reviews, 71(Suppl. 1), S42–S54. [CrossRef]

Highlights for the Research Involving the Lactation Period in Laboratory Rats

Year 2023, , 45 - 50, 27.09.2023
https://doi.org/10.5152/JLASP.2023.23008

Abstract

Lactation is an important period in newborn nutrition since nutritional factors in the early stages of development have life-long impacts. Lactation provides various important long-lasting health benefits to the offspring. The lactation period, however, provides much more than just nutrients. The composition and quantity of nutrients in breast milk are not the only factors that can influ ence offsprings during breastfeeding. Maternal behaviors to nourish and protect her litters dur ing lactation are also important in programing. The current study attempted to focus on specific characteristics of the breastfeeding period, such as changes in food consumption, mother’s weight, and the time dams spend lactating with or without pups. A deeper understanding of this critical period will allow for designing better pediatric models including maternal separation, artificial rearing, and studies covering maternal manipulations.

References

  • 1. Ballard, O., & Morrow, A. L. (2013). Human milk composition: Nutrients and bioactive factors. Pediatric Clinics of North America, 60(1), 49–74. [CrossRef]
  • 2. Barker, D. J. (1990). The fetal and infant origins of adult disease. BMJ, 301(6761), 1111. [CrossRef]
  • 3. Bauman, D. E., & Bruce Currie, W. B. (1980). Partitioning of nutrients during pregnancy and lactation: A review of mechanisms involving homeostasis and homeorhesis. Journal of Dairy Science, 63(9), 1514–1529. [CrossRef]
  • 4. Bautista, C. J., Bautista, R. J., Montaño, S., Reyes-Castro, L. A., Rodriguez Peña, O. N., Ibáñez, C. A., Nathanielsz, P. W., & Zambrano, E. (2019). Effects of maternal protein restriction during pregnancy and lactation on milk composition and offspring development. British Journal of Nutrition, 122(2), 141–151. [CrossRef]
  • 5. Bautista, C. J., Boeck, L., Larrea, F., Nathanielsz, P. W., & Zambrano, E. (2008). Effects of a maternal low protein isocaloric diet on milk leptin and progeny serum leptin concentration and appetitive behavior in the first 21 days of neonatal life in the rat. Pediatric Research, 63(4), 358–363. [CrossRef]
  • 6. de Waard, M., Brands, B., Kouwenhoven, S. M. P., Lerma, J. C., Crespo Escobar, P., Koletzko, B., Zalewski, B. M., & van Goudoever, J. B. (2017). Optimal nutrition in lactating women and its effect on later health of offspring: A systematic review of current evidence and recommendations (EarlyNutrition project). Critical Reviews in Food Science and Nutrition, 57(18), 4003–4016. [CrossRef]
  • 7. Fields, D. A., Schneider, C. R., & Pavela, G. (2016). A narrative review of the associations between six bioactive components in breast milk and infant adiposity. Obesity, 24(6), 1213–1221. [CrossRef]
  • 8. Forsdahl, A. (1977). Are poor living conditions in childhood and adolescence an important risk factor for arteriosclerotic heart disease? British Journal of Preventive and Social Medicine, 31(2), 91–95. [CrossRef]
  • 9. Gunderson, E. P., Lewis, C. E., Lin, Y., Sorel, M., Gross, M., Sidney, S., Jacobs, D. R., Shikany, J. M., & Quesenberry, C. P. (2018). Lactation duration and progression to diabetes in women across the childbearing years: The 30-year CARDIA study. JAMA Internal Medicine, 178(3), 328–337. [CrossRef]
  • 10. Li, C., Jenkins, S., Considine, M. M., Cox, L. A., Gerow, K. G., Huber, H. F., & Nathanielsz, P. W. (2019). Effect of maternal obesity on fetal and postnatal baboon (Papio Species) early life phenotype. Journal of Medical Primatology, 48(2): 90–98. (doi: [CrossRef]
  • 11. Martin, C. R., Ling, P. R., & Blackburn, G. L. (2016). Review of infant feeding: Key features of breast milk and infant formula. Nutrients, 8(5), 279. [CrossRef]
  • 12. Power, M. L., & Schulkin, J. (2013). Maternal regulation of offspring development in mammals is an ancient adaptation tied to lactation. Applied and Translational Genomics, 2, 55–63. [CrossRef]
  • 13. Qasim, A., Turcotte, M., de Souza, R. J., Samaan, M. C., Champredon, D., Dushoff, J., Speakman, J. R., & Meyre, D. (2018). On the origin of obesity: Identifying the biological, environmental and cultural drivers of genetic risk among human populations. Obesity Reviews, 19(2), 121–149. [CrossRef]
  • 14. Ramos, R. G., & Olden, K. (2008). Gene-environment interactions in the development of complex disease phenotypes. International Journal of Environmental Research and Public Health, 5(1), 4–11. [CrossRef]
  • 15. Ruiz, L., Espinosa-Martos, I., García-Carral, C., Manzano, S., McGuire, M. K., Meehan, C. L., McGuire, M. A., Williams, J. E., Foster, J., Sellen, D. W., Kamau-Mbuthia, E. W., Kamundia, E. W., Mbugua, S., Moore, S. E., Kvist, L. J., Otoo, G. E., Lackey, K. A., Flores, K., Pareja, R. G., Bode, L. … Rodríguez, J. M. (2017). What’s normal? Immune profiling of human milk from healthy women living in different geographical and socioeconomic settings. Frontiers in Immunology, 8, 696. [CrossRef]
  • 16. Sinclair, K. D., Rutherford, K. M. D., Wallace, J. M., Brameld, J. M., Stöger, R., Alberio, R., Sweetman, D., Gardner, D. S., Perry, V. E. A., Adam, C. L., Ashworth, C. J., Robinson, J. E., & Dwyer, C. M. (2016). Epigenetics and developmental programming of welfare and production traits in farm animals. Reproduction, Fertility, and Development, 28(10), 1443. [CrossRef]
  • 17. Suzuki, K. (2018). The developing world of DOHaD. Journal of Develop mental Origins of Health and Disease, 9(3), 266–269. [CrossRef] Victora, C. G., Bahl, R., Barros, A. J. D., França, G. V. A., Horton, S., Krasevec, J., Murch, S., Sankar, M. J., Walker, N., Rollins, N. C., & Lancet Breast feeding Series Group (2016). Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. Lancet, 387(10017), 475–490. [CrossRef]
  • 18. Vieau, D. (2011). Perinatal nutritional programming of health and metabolic adult disease. World Journal of Diabetes, 2(9), 133–136. [CrossRef]
  • 19. Wang, Q., Zhu, Chaoqun, Sun, M., Maimaiti, R., Ford, S. P., Nathanielsz, P. W., Ren, J., & Guo, W. (2019). Maternal obesity impairs fetal cardiomyocyte contractile function in sheep. FASEB Journal, 33(2), 2587–2598. [CrossRef]
  • 20. Wu, X., Jackson, R. T., Khan, Saira A., Ahuja, J., & Pehrsson, P. R. (2018). Human milk nutrient composition in the United States: Current knowledge, challenges, and research needs. Current Developments in Nutrition, 2(7), nzy025. [CrossRef]
  • 21. Zambrano, E., & Nathanielsz, P. W. (2013). Mechanisms by which maternal obesity programs offspring for obesity: Evidence from animal studies. Nutrition Reviews, 71(Suppl. 1), S42–S54. [CrossRef]
There are 21 citations in total.

Details

Primary Language English
Subjects Health Services and Systems (Other)
Journal Section Research Articles
Authors

Canberk Yılmaz

Defne Engür

Pembe Keskinoğlu

Abdullah Kumral

Osman Yılmaz

Publication Date September 27, 2023
Submission Date April 26, 2023
Published in Issue Year 2023

Cite

EndNote Yılmaz C, Engür D, Keskinoğlu P, Kumral A, Yılmaz O (September 1, 2023) Highlights for the Research Involving the Lactation Period in Laboratory Rats. Laboratuvar Hayvanları Bilimi ve Uygulamaları Dergisi 3 2 45–50.

Content of this journal is licensed under a Creative Commons Attribution NonCommercial 4.0 International License

29929