Review
BibTex RIS Cite

Hayati Önemde Bir Balık: Hastalık Senaryolarında Zebra Balığı Modelinin Kullanıldığı Kritik Araştırmalar ve Vaka Raporlarının Taraması

Year 2024, , 53 - 59, 19.09.2024
https://doi.org/10.62425/jlasp.1426010

Abstract

Geçen yüzyılın ve halen de tıbbi gelişmelerin neredeyse tamamı hayvanlar üzerinde yapılan araştırmalara dayalıdır. Zebra balığının okyanustan laboratuvara olan yolculuğu büyük bilimsel buluşlara yol açar. Zebra balığının şeffaf yapısı, iç yapılarının izlenmesine yardımcı olur ve bilim adamlarının balıklardaki nano parçacıkların etkilerini görmesine olanak tanır. Organları insanlarla aynı temel özellikleri paylaşıyor ve bu nedenle insanın gelişim süreçlerini incelemek için kullanılabilir. Zebra balığı genlerinin %70'i insanlarla uyum gösterir ve hastalığa bağlı genlerin %84'ü zebra balığı uyumuna sahiptir. Zebra balığı embriyolarının genetiği de değiştirilebilir. Zebra balığı gibi bazı balıklar, hasar görmüş retina sinir hücrelerini yenileyebilir. Zebra balığının retinasındaki Müller galia hücreleri, yaralanmaya yanıt olarak dönüşebilir ve retinayı yeniden büyütmek ve tüm hasarlı nöronları değiştirmek için kök hücreler gibi davranabilir. İnsanlar aynı Müller galia hücresine sahip olsalar da, hasara aynı şekilde tepki vermezler. Zebra balığı aynı zamanda genomlarının düzenlenmesine de oldukça duyarlıdır. Zebra balığı larva döneminde kalp gibi bazı dokuları yeniler. Ayrıca zebra balığı, ilaçların nasıl çalıştığı ve organizmanın vücuduna ne yaptığı gibi farmakolojiyi incelemek için bir hayvan modeli olarak kullanılıyor. Bu derlemenin amacı, burada, hücresel davranışlara ve moleküler mekanizmalara odaklanarak, in vivo modellerden elde edilen bulguları vurgulayarak ve doku hücre kültürü ve organoidlerdeki son gelişmeleri kısaca tartışarak, bu özelleşmiş yapıların ve model organizmanın nasıl olduğuna dair mevcut bilgileri gözden geçirmektir. Derleme, insan organoid hastalık modellerinin model organizma üzerindeki uygulamalarını tartışmakta ve hastalık tedavilerinin ana hatlarının altını çizmektedir..

References

  • Ankeny, R. A., & Leonelli, S. (2011). What’s so special about model organisms?. Studies in History and Philosophy of Science Part A, 42(2), 313-323. https://doi.org/10.1016/j.shpsa.2010.11.039.
  • Bibliowicz, J., Tittle, R. K., & Gross, J. M. (2011). Toward a better understanding of human eye disease: Insights from the zebrafish, Danio rerio. Progress in molecular biology and translational science, 100, 287-330. https://doi.org/10.1016/B978-0-12-384878-9.00007-8.
  • Biswas. J. (2021). Tiny zebrafish can help humans reach mars someday; here's how [New Study]. (21 Mayıs 2021). By Jeevan Biswas May 21, 2021 22:12 IST, Access of Date: 12.12.2021. International Business Times, https://www.ibtimes.co.in/tiny-zebrafish-can-help-humans-reach-mars-someday-heres-how-new-study-836571.
  • Bournele, D., & Beis, D. (2016). Zebrafish models of cardiovascular disease. Heart failure reviews, 21, 803-813. https://doi.org/10.1007/s10741-016-9579-y.
  • Burton, E. A., & Burgess, H. A. (2023). A critical review of zebrafish neurological disease models− 2. application: functional and neuroanatomical phenotyping strategies and chemical screens. Oxford Open Neuroscience, 2, kvac019. https://doi.org/10.1093/oons/kvac019.
  • Calderon-Zavala, A. (2019). Examining lateral line development through CXCL14 modulation of CXCL12-CXCR4 mediated gene expression in Danio rerio.
  • Chia, K., Klingseisen, A., Sieger, D., & Priller, J. (2022). Zebrafish as a model organism for neurodegenerative disease. Frontiers in Molecular Neuroscience, 15, 940484.
  • Collins, M. M., & Stainier, D. Y. (2016). Organ function as a modulator of organ formation: lessons from zebrafish. Current topics in developmental biology, 117, 417-433. https://doi.org/10.1016/bs.ctdb.2015.10.017.
  • Dodd, A., Curtis, P. M., Williams, L. C., & Love, D. R. (2000). Zebrafish: bridging the gap between development and disease. Human molecular genetics, 9(16), 2443-2449. https://doi.org/10.1093/hmg/9.16.2443.
  • Doiphode, P., Bhosale, U., & Doiphode, P. (2021). Use of Laboratory Animals in Biomedical Research. Medical Journal of Basic and Applied Research.
  • Fishman, M. C. (1999). Zebrafish genetics: the enigma of arrival. Proceedings of the National Academy of Sciences, 96(19), 10554-10556. https://doi.org/10.1073/pnas.96.19.10554.
  • Gomes Da Silva Martinho, R. (2019). Genetic and functional analyses of the developing asymmetric zebrafish habenula (Doctoral dissertation, UCL (University College London)).
  • Gunawan, F., Priya, R., & Stainier, D. Y. (2021). Sculpting the heart: Cellular mechanisms shaping valves and trabeculae. Current Opinion in Cell Biology, 73, 26-34. https://doi.org/10.1016/j.ceb.2021.04.009.
  • Han, L., & Jiang, C. (2021). Evolution of blood–brain barrier in brain diseases and related systemic nanoscale brain-targeting drug delivery strategies. Acta Pharmaceutica Sinica B, 11(8), 2306-2325. https://doi.org/10.1016/j.apsb.2020.11.023.
  • Hawkins, M. B., Henke, K., & Harris, M. P. (2021). Latent developmental potential to form limb-like skeletal structures in zebrafish. Cell, 184(4), 899-911. doi: 10.1016/j.cell.2021.01.003.
  • Jennings, B. H. (2011). Drosophila–a versatile model in biology & medicine. Materials today, 14(5), 190-195. https://doi.org/10.1016/S1369-7021(11)70113-4.
  • Justis, B. S. (2020). Elucidating the Developmental Defects in Zebrafish Associated With the Cardiac Drug Verapamil. MSU Graduate Theses.
  • Kayhan, F., Kaymak, G., Duruel, H. E. E., & Kızılkaya, Ş. T. (2018). Biyolojik araştırmalarda zebra balığının (Danio rerio Hamilton, 1822) kullanılması ve önemi. Gaziosmanpaşa Bilimsel Araştırma Dergisi, 7(2), 38-45.
  • Kim, J., Koo, B. K., & Knoblich, J. A. (2020). Human organoids: model systems for human biology and medicine. Nature Reviews Molecular Cell Biology, 21(10), 571-584.
  • Klatt Shaw, D., & Mokalled, M. H. (2021). Efficient CRISPR/Cas9 mutagenesis for neurobehavioral screening in adult zebrafish. G3, 11(8), jkab089. https://doi.org/10.1093/g3journal/jkab089.
  • Klein, J., Fasshauer, M., Klein, H. H., Benito, M., & Kahn, C. R. (2002). Novel adipocyte lines from brown fat: a model system for the study of differentiation, energy metabolism, and insulin action. Bioessays, 24(4), 382-388. https://doi.org/10.1002/bies.10058.
  • Li, W. (2024). Single-cell atlas of mutant zebrafish embryos. Nature Genetics, 56(1), 9-9. https://doi.org/10.1038/s41588-023-01634-1.
  • Lin, J., Chen, Q., & Hu, J. (2022). Color Atlas of Zebrafish Histology and Cytology. Springer Nature.
  • Liu, J., Yuan, X., Fan, C., & Ma, G. (2024). Application of the zebrafish model in human viral research. Virus Research, 341, 199327. https://doi.org/10.1016/j.virusres.2024.199327.
  • Major, R. J., & Poss, K. D. (2007). Zebrafish heart regeneration as a model for cardiac tissue repair. Drug Discovery Today: Disease Models, 4(4), 219-225. doi: 10.1016/j.ddmod.2007.09.002.
  • McKie. R. (2013). How the diminutive zebrafish is having a big impact on medical research. (15 Eylül 2013). The Guardian. Sun 15 Sep 2013 08.00 CEST. Access of Date: 12.12.2023. https://www.theguardian.com/science/2013/sep/15/zebrafish-human-genes-project.
  • Nicolson, T. (2017). The genetics of hair-cell function in zebrafish. Journal of neurogenetics, 31(3), 102-112. https://doi.org/10.1080/01677063.2017.1342246.
  • Pandey, G. (2011). Model organism used in molecular biology or medical research. International Research Journal of Pharmacy, 2(11), 62-65.
  • Pathak, N. H., & Barresi, M. J. (2020). Zebrafish as a model to understand vertebrate development. In The Zebrafish in Biomedical Research (pp. 559-591). Academic Press. https://doi.org/10.1016/B978-0-12-812431-4.00045-2.
  • Podlacha, M., Grabowski, Ł., Kosznik-Kawśnicka, K., Zdrojewska, K., Stasiłojć, M., Węgrzyn, G., & Węgrzyn, A. (2021). Interactions of bacteriophages with animal and human organisms—safety issues in the light of phage therapy. International Journal of Molecular Sciences, 22(16), 8937. https://doi.org/10.3390/ijms22168937.
  • Rocha, M., Singh, N., Ahsan, K., Beiriger, A., & Prince, V. E. (2020). Neural crest development: insights from the zebrafish. Developmental Dynamics, 249(1), 88-111. https://doi.org/10.1002/dvdy.122.
  • Shrivastav, P. (2023). Zebrafish-A Promising Aspect Towards Heart Regeneration. International Journal of Novel Research and Development, 8 (1), 787-802.
  • Sprague, J., Bayraktaroglu, L., Bradford, Y., Conlin, T., Dunn, N., Fashena, D., ... & Westerfield, M. (2007). The zebrafish information network: the zebrafish model organism database provides expanded support for genotypes and phenotypes. Nucleic acids research, 36(suppl_1), D768-D772. https://doi.org/10.1093/nar/gkm956.
  • Swabe, J. (2002). Animals, disease and human society: human-animal relations and the rise of veterinary medicine. Routledge.
  • Tarique, I., Lu, T., & Tariq, M. (2023). Cellular activity of autophagy and multivesicular bodies in lens fiber cells during early lens development in rbm24a mutant of zebrafish: ultrastructure analysis. Micron, 169, 103446. https://doi.org/10.1016/j.micron.2023.103446.
  • Teame, T., Zhang, Z., Ran, C., Zhang, H., Yang, Y., Ding, Q., ... & Zhou, Z. (2019). The use of zebrafish (Danio rerio) as biomedical models. Animal Frontiers, 9(3), 68-77. doi: 10.1093/af/vfz020.
  • Terrazas, K., Dixon, J., Trainor, P. A., & Dixon, M. J. (2017). Rare syndromes of the head and face: mandibulofacial and acrofacial dysostoses. Wiley Interdisciplinary Reviews: Developmental Biology, 6(3), e263. https://doi.org/10.1002/wdev.263.
  • Thawkar, B. S., & Kaur, G. (2021). Zebrafish as a promising tool for modeling neurotoxin-induced Alzheimer’s disease. Neurotoxicity Research, 39, 949-965.
  • Voisin, N. (2019). Identification Of New Genetic Causes Of Syndromic Intellectual Disability (Doctoral dissertation, Université de Lausanne, Faculté de biologie et médecine).
  • Yang, J. F., Walia, A., Huang, Y. H., Han, K. Y., Rosenblatt, M. I., Azar, D. T., & Chang, J. H. (2016). Understanding lymphangiogenesis in knockout models, the cornea, and ocular diseases for the development of therapeutic interventions. Survey of ophthalmology, 61(3), 272-296. https://doi.org/10.1016/j.survophthal.2015.12.004.
  • Yoshida, Y. (2023). Joint representation: Modeling a phenomenon with multiple biological systems. Studies in History and Philosophy of Science, 99, 67-76. https://doi.org/10.1016/j.shpsa.2023.03.002.
  • Zabegalov, K. N., Costa, F. V., Kolesnikova, T. O., de Abreu, M. S., Petersen, E. V., Yenkoyan, K. B., & Kalueff, A. V. (2024). Can we gain translational insights into the functional roles of cerebral cortex from acortical rodent and naturally acortical zebrafish models?. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 110964. https://doi.org/10.1016/j.pnpbp.2024.110964.

Vital A Fish: A Critical Review of Zebrafish Models in Disease Scenario and Case Reports Screens

Year 2024, , 53 - 59, 19.09.2024
https://doi.org/10.62425/jlasp.1426010

Abstract

ABSTRACT
Virtually every major medical advance of the last century and at still has depended upon research with animals. Zebrafish's journey from the ocean to the laboratory leads to major scientific breakthroughs. Transparency structure of zebrafish helps in monitoring their internal structures and are permitting scientist to see effectes of nano particles in fish. Their organs share the same main features as humans and so can be used to study human developmental processes. Zebrafish congruence 70% of their genes with humans, and 84% of ailment-depended genes have zebrafish congruence. The zebrafish embryos can also genetically modified. Certain fishes like zebrafish are able to regenerate damaged retinal nerve cells. Müller galia cells in retina of zebrafish can transform in response to injury and act like stem cells to regrow the retina and replace all damaged neurons. Though humans have the same exact Müller galia cell, they don’t respond to damaged in the same way. Zebrafish are also very responsive to having their genomes edited. Zebrafish regenerate some tissue such as heart in during larval stage. In additionaly zebrafish are used as an animal model to study pharmocology – how drugs work and what they do to an organism’s body. Aim of this review, here, we review current knowledge of how these specialized structures and model organism by focusing on cellular behaviors and molecular mechanisms, highlighting findings from in vivo models and briefly discussing the recent advances in tissue cell culture and organoids. Review discusses the applications of human organoids models of disease on model organism and outlines the ailment treatments.

References

  • Ankeny, R. A., & Leonelli, S. (2011). What’s so special about model organisms?. Studies in History and Philosophy of Science Part A, 42(2), 313-323. https://doi.org/10.1016/j.shpsa.2010.11.039.
  • Bibliowicz, J., Tittle, R. K., & Gross, J. M. (2011). Toward a better understanding of human eye disease: Insights from the zebrafish, Danio rerio. Progress in molecular biology and translational science, 100, 287-330. https://doi.org/10.1016/B978-0-12-384878-9.00007-8.
  • Biswas. J. (2021). Tiny zebrafish can help humans reach mars someday; here's how [New Study]. (21 Mayıs 2021). By Jeevan Biswas May 21, 2021 22:12 IST, Access of Date: 12.12.2021. International Business Times, https://www.ibtimes.co.in/tiny-zebrafish-can-help-humans-reach-mars-someday-heres-how-new-study-836571.
  • Bournele, D., & Beis, D. (2016). Zebrafish models of cardiovascular disease. Heart failure reviews, 21, 803-813. https://doi.org/10.1007/s10741-016-9579-y.
  • Burton, E. A., & Burgess, H. A. (2023). A critical review of zebrafish neurological disease models− 2. application: functional and neuroanatomical phenotyping strategies and chemical screens. Oxford Open Neuroscience, 2, kvac019. https://doi.org/10.1093/oons/kvac019.
  • Calderon-Zavala, A. (2019). Examining lateral line development through CXCL14 modulation of CXCL12-CXCR4 mediated gene expression in Danio rerio.
  • Chia, K., Klingseisen, A., Sieger, D., & Priller, J. (2022). Zebrafish as a model organism for neurodegenerative disease. Frontiers in Molecular Neuroscience, 15, 940484.
  • Collins, M. M., & Stainier, D. Y. (2016). Organ function as a modulator of organ formation: lessons from zebrafish. Current topics in developmental biology, 117, 417-433. https://doi.org/10.1016/bs.ctdb.2015.10.017.
  • Dodd, A., Curtis, P. M., Williams, L. C., & Love, D. R. (2000). Zebrafish: bridging the gap between development and disease. Human molecular genetics, 9(16), 2443-2449. https://doi.org/10.1093/hmg/9.16.2443.
  • Doiphode, P., Bhosale, U., & Doiphode, P. (2021). Use of Laboratory Animals in Biomedical Research. Medical Journal of Basic and Applied Research.
  • Fishman, M. C. (1999). Zebrafish genetics: the enigma of arrival. Proceedings of the National Academy of Sciences, 96(19), 10554-10556. https://doi.org/10.1073/pnas.96.19.10554.
  • Gomes Da Silva Martinho, R. (2019). Genetic and functional analyses of the developing asymmetric zebrafish habenula (Doctoral dissertation, UCL (University College London)).
  • Gunawan, F., Priya, R., & Stainier, D. Y. (2021). Sculpting the heart: Cellular mechanisms shaping valves and trabeculae. Current Opinion in Cell Biology, 73, 26-34. https://doi.org/10.1016/j.ceb.2021.04.009.
  • Han, L., & Jiang, C. (2021). Evolution of blood–brain barrier in brain diseases and related systemic nanoscale brain-targeting drug delivery strategies. Acta Pharmaceutica Sinica B, 11(8), 2306-2325. https://doi.org/10.1016/j.apsb.2020.11.023.
  • Hawkins, M. B., Henke, K., & Harris, M. P. (2021). Latent developmental potential to form limb-like skeletal structures in zebrafish. Cell, 184(4), 899-911. doi: 10.1016/j.cell.2021.01.003.
  • Jennings, B. H. (2011). Drosophila–a versatile model in biology & medicine. Materials today, 14(5), 190-195. https://doi.org/10.1016/S1369-7021(11)70113-4.
  • Justis, B. S. (2020). Elucidating the Developmental Defects in Zebrafish Associated With the Cardiac Drug Verapamil. MSU Graduate Theses.
  • Kayhan, F., Kaymak, G., Duruel, H. E. E., & Kızılkaya, Ş. T. (2018). Biyolojik araştırmalarda zebra balığının (Danio rerio Hamilton, 1822) kullanılması ve önemi. Gaziosmanpaşa Bilimsel Araştırma Dergisi, 7(2), 38-45.
  • Kim, J., Koo, B. K., & Knoblich, J. A. (2020). Human organoids: model systems for human biology and medicine. Nature Reviews Molecular Cell Biology, 21(10), 571-584.
  • Klatt Shaw, D., & Mokalled, M. H. (2021). Efficient CRISPR/Cas9 mutagenesis for neurobehavioral screening in adult zebrafish. G3, 11(8), jkab089. https://doi.org/10.1093/g3journal/jkab089.
  • Klein, J., Fasshauer, M., Klein, H. H., Benito, M., & Kahn, C. R. (2002). Novel adipocyte lines from brown fat: a model system for the study of differentiation, energy metabolism, and insulin action. Bioessays, 24(4), 382-388. https://doi.org/10.1002/bies.10058.
  • Li, W. (2024). Single-cell atlas of mutant zebrafish embryos. Nature Genetics, 56(1), 9-9. https://doi.org/10.1038/s41588-023-01634-1.
  • Lin, J., Chen, Q., & Hu, J. (2022). Color Atlas of Zebrafish Histology and Cytology. Springer Nature.
  • Liu, J., Yuan, X., Fan, C., & Ma, G. (2024). Application of the zebrafish model in human viral research. Virus Research, 341, 199327. https://doi.org/10.1016/j.virusres.2024.199327.
  • Major, R. J., & Poss, K. D. (2007). Zebrafish heart regeneration as a model for cardiac tissue repair. Drug Discovery Today: Disease Models, 4(4), 219-225. doi: 10.1016/j.ddmod.2007.09.002.
  • McKie. R. (2013). How the diminutive zebrafish is having a big impact on medical research. (15 Eylül 2013). The Guardian. Sun 15 Sep 2013 08.00 CEST. Access of Date: 12.12.2023. https://www.theguardian.com/science/2013/sep/15/zebrafish-human-genes-project.
  • Nicolson, T. (2017). The genetics of hair-cell function in zebrafish. Journal of neurogenetics, 31(3), 102-112. https://doi.org/10.1080/01677063.2017.1342246.
  • Pandey, G. (2011). Model organism used in molecular biology or medical research. International Research Journal of Pharmacy, 2(11), 62-65.
  • Pathak, N. H., & Barresi, M. J. (2020). Zebrafish as a model to understand vertebrate development. In The Zebrafish in Biomedical Research (pp. 559-591). Academic Press. https://doi.org/10.1016/B978-0-12-812431-4.00045-2.
  • Podlacha, M., Grabowski, Ł., Kosznik-Kawśnicka, K., Zdrojewska, K., Stasiłojć, M., Węgrzyn, G., & Węgrzyn, A. (2021). Interactions of bacteriophages with animal and human organisms—safety issues in the light of phage therapy. International Journal of Molecular Sciences, 22(16), 8937. https://doi.org/10.3390/ijms22168937.
  • Rocha, M., Singh, N., Ahsan, K., Beiriger, A., & Prince, V. E. (2020). Neural crest development: insights from the zebrafish. Developmental Dynamics, 249(1), 88-111. https://doi.org/10.1002/dvdy.122.
  • Shrivastav, P. (2023). Zebrafish-A Promising Aspect Towards Heart Regeneration. International Journal of Novel Research and Development, 8 (1), 787-802.
  • Sprague, J., Bayraktaroglu, L., Bradford, Y., Conlin, T., Dunn, N., Fashena, D., ... & Westerfield, M. (2007). The zebrafish information network: the zebrafish model organism database provides expanded support for genotypes and phenotypes. Nucleic acids research, 36(suppl_1), D768-D772. https://doi.org/10.1093/nar/gkm956.
  • Swabe, J. (2002). Animals, disease and human society: human-animal relations and the rise of veterinary medicine. Routledge.
  • Tarique, I., Lu, T., & Tariq, M. (2023). Cellular activity of autophagy and multivesicular bodies in lens fiber cells during early lens development in rbm24a mutant of zebrafish: ultrastructure analysis. Micron, 169, 103446. https://doi.org/10.1016/j.micron.2023.103446.
  • Teame, T., Zhang, Z., Ran, C., Zhang, H., Yang, Y., Ding, Q., ... & Zhou, Z. (2019). The use of zebrafish (Danio rerio) as biomedical models. Animal Frontiers, 9(3), 68-77. doi: 10.1093/af/vfz020.
  • Terrazas, K., Dixon, J., Trainor, P. A., & Dixon, M. J. (2017). Rare syndromes of the head and face: mandibulofacial and acrofacial dysostoses. Wiley Interdisciplinary Reviews: Developmental Biology, 6(3), e263. https://doi.org/10.1002/wdev.263.
  • Thawkar, B. S., & Kaur, G. (2021). Zebrafish as a promising tool for modeling neurotoxin-induced Alzheimer’s disease. Neurotoxicity Research, 39, 949-965.
  • Voisin, N. (2019). Identification Of New Genetic Causes Of Syndromic Intellectual Disability (Doctoral dissertation, Université de Lausanne, Faculté de biologie et médecine).
  • Yang, J. F., Walia, A., Huang, Y. H., Han, K. Y., Rosenblatt, M. I., Azar, D. T., & Chang, J. H. (2016). Understanding lymphangiogenesis in knockout models, the cornea, and ocular diseases for the development of therapeutic interventions. Survey of ophthalmology, 61(3), 272-296. https://doi.org/10.1016/j.survophthal.2015.12.004.
  • Yoshida, Y. (2023). Joint representation: Modeling a phenomenon with multiple biological systems. Studies in History and Philosophy of Science, 99, 67-76. https://doi.org/10.1016/j.shpsa.2023.03.002.
  • Zabegalov, K. N., Costa, F. V., Kolesnikova, T. O., de Abreu, M. S., Petersen, E. V., Yenkoyan, K. B., & Kalueff, A. V. (2024). Can we gain translational insights into the functional roles of cerebral cortex from acortical rodent and naturally acortical zebrafish models?. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 110964. https://doi.org/10.1016/j.pnpbp.2024.110964.
There are 42 citations in total.

Details

Primary Language English
Subjects Zoology (Other)
Journal Section Reviews
Authors

Nurdan Filik 0000-0003-4376-7298

Publication Date September 19, 2024
Submission Date January 26, 2024
Acceptance Date May 22, 2024
Published in Issue Year 2024

Cite

EndNote Filik N (September 1, 2024) Vital A Fish: A Critical Review of Zebrafish Models in Disease Scenario and Case Reports Screens. Laboratuvar Hayvanları Bilimi ve Uygulamaları Dergisi 4 2 53–59.

Content of this journal is licensed under a Creative Commons Attribution NonCommercial 4.0 International License

29929