Research Article
BibTex RIS Cite

Prevention of intraabdominal adhesion using rifampicin alone or in combination with oxidized regenerated cellulose following ovariohysterectomy in rats

Year 2025, Volume: 5 Issue: 1, 21 - 29, 17.03.2025
https://doi.org/10.62425/jlasp.1536699

Abstract

This study aimed to evaluate the efficacy of rifampicin, administered alone or in combination with oxidized regenerated cellulose (Surgicel), in preventing postoperative intra-abdominal adhesions following ovariohysterectomy (OVH) in a rat model. Thirty-two female Wistar rats underwent OVH and were randomly assigned to four groups: a control group treated with saline (C), a Surgicel application group (S), a rifampicin administration group (R), and a combination group receiving both Surgicel and rifampicin (S+R). The development of adhesions was evaluated macroscopically and histopathologically on postoperative day 28. Additionally, immunohistochemical staining for TNF-α and immunofluorescence staining for VEGF were performed to assess inflammatory and angiogenic responses, respectively. Macroscopic and histopathological assessments revealed that rifampicin application (R) significantly reduced the intensity and severity of adhesion formation compared to the control. Interestingly, the S group exhibited adhesion rates comparable to the control, while the S+R group demonstrated a moderate decrease in adhesions. Immunohistochemical and immunofluorescence findings corroborated the macroscopic observations, indicating that rifampicin may attenuate the inflammatory and fibrogenic responses associated with adhesion formation. Rifampicin alone shows promise in reducing the formation and severity of intra-abdominal adhesions post-OVH. The combination of Surgicel and rifampicin did not yield a synergistic effect, as Surgicel application alone did not demonstrate significant efficacy in adhesion prevention. These findings suggest that while Surgicel is beneficial for haemostasis, caution should be exercised due to its potential contribution to adhesion formation. Further investigation is warranted to elucidate the pharmacokinetic and cellular mechanisms by which rifampicin might inhibit adhesion formation following abdominal surgery.

References

  • 1. Akinrinmade, J. F., & Lawal, A. O. (2010). Gross and histologic evaluation of abdominal adhesions associated with chromic catgut and polypropylene sutured enteropexies in dog. International Journal of Morphology, 28(4), 1221-1225. DOI:10.4067/S0717-95022010000400037
  • 2. Alonso, J. D. M., Alves, A. L. G., Watanabe, M. J., Rodrigues, C. A., & Hussni, C. A. (2014). Peritoneal response to abdominal surgery: The role of equine abdominal adhesions and current prophylactic strategies. Veterinary Medicine International, 2014(1), 279730. https://doi.org/10.1155/2014/279730
  • 3. Ates, U., Ata, B., Ortakuz, S., Seyhan, A., & Urman, B. (2008). Prevention of adhesion formation following ovarian surgery in a standardized animal model: Comparative study of Interceed and double layer Surgicell. Journal of Obstetrics and Gynaecology Research, 34(1), 12-17. https://doi.org/10.1111/j.1447-0756.2007.00684.x
  • 4. Aysan, E., Demir, M., Kinaci, E., & Basak, F. (2005). Complications of intestinal milking: Experimental model. ANZ Journal of Surgery, 75(5), 322-325. https://doi.org/10.1111/j.1445-2197.2005.03307.x
  • 5. Barnard, J., & Millner, R. (2009). A review of topical hemostatic agents for use in cardiac surgery. The Annals of Thoracic Surgery, 88(4), 1377-1383. https://doi.org/10.1016/j.athoracsur.2009.02.092
  • 6. Bergström, M., Falk, P., & Holmdahl, L. (2006). Effect of acidosis on expression of mesothelial cell plasminogen activator inhibitor type-1. Surgical Endoscopy, 20, 1448-1452. DOI: 10.1007/s00464-005-0283-6
  • 7. Demirel, M. A., & Acar, D. B. (2012). Ovarian remnant syndrome and uterine stump pyometra in three queens. Journal of Feline Medicine and Surgery, 14(12), 913-918. https://doi.org/10.1177/1098612X12451373
  • 8. Ergin, İ., & Demirel, M. A. (2017). Kedi ve Köpeklerde Abdominal Cerrahi ve Jinekolojik Operasyonlar Sonrası İntra-Abdominal Adezyon Oluşumu ve Medikal Olarak Önlenmesi. Erciyes Üniversitesi Veteriner Fakültesi Dergisi, 14(1), 61-72.
  • 9. Falagas, M. E., & Vergidis, P. I. (2005). Irrigation with antibiotic-containing solutions for the prevention and treatment of infections. Clinical Microbiology and Infection, 11(11), 862-867. https://doi.org/10.1111/j.1469-0691.2005.01201.x
  • 10. Falk, K., Björquist, P., Strömqvist, M., & Holmdahl, L. (2001). Reduction of experimental adhesion formation by inhibition of plasminogen activator inhibitor type 1. British Journal of Surgery, 88(2), 286-289. https://doi.org/10.1046/j.1365-2168.2001.01647.x
  • 11. Fatehi Hassanabad, A., Zarzycki, A. N., Jeon, K., Dundas, J. A., Vasanthan, V., Deniset, J. F., & Fedak, P. W. (2021). Prevention of post-operative adhesions: A comprehensive review of present and emerging strategies. Biomolecules, 11(7), 1027. https://doi.org/10.3390/biom11071027
  • 12. Franceschini, G. (2019). Internal surgical use of biodegradable carbohydrate polymers. Warning for a conscious and proper use of oxidized regenerated cellulose. Carbohydrate Polymers, 216, 213-216. https://doi.org/10.1016/j.carbpol.2019.04.036
  • 13. Fu, F., Hou, Y., Jiang, W., Wang, R., & Liu, K. (2005). Escin: Inhibiting inflammation and promoting gastrointestinal transit to attenuate formation of postoperative adhesions. World Journal of Surgery, 29, 1614-1620. DOI: 10.1007/s00268-005-7870-5
  • 14. Gray, C. F., Redpath, T. W., Bainton, R., & Smith, F. W. (2001). Magnetic resonance imaging assessment of a sinus lift operation using reoxidised cellulose (Surgicel®) as graft material. Clinical Oral Implants Research, 12(5), 526-530. https://doi.org/10.1034/j.1600-0501.2001.120514.x
  • 15. Ghobrial, S., Ott, J., & Parry, J. P. (2023). An overview of postoperative intraabdominal adhesions and their role on female infertility: A narrative review. Journal of Clinical Medicine, 12(6), 2263. https://doi.org/10.3390/jcm12062263
  • 16. Güney, G., Kaya, C., Oto, G., Yıldırım, S., Özdemir, H., & Tokmak, A. (2017). Effects of quercetin and surgicel for preventing adhesions after gynecological surgery: A rat uterine horn model. Journal of Obstetrics and Gynaecology Research, 43(1), 179-184. https://doi.org/10.1111/jog.13185
  • 17. Hoffmann, N. E., Siddiqui, S. A., Agarwal, S., McKellar, S. H., Kurtz, H. J., Gettman, M. T., & Ereth, M. H. (2009). Choice of hemostatic agent influences adhesion formation in a rat cecal adhesion model. Journal of Surgical Research, 155(1), 77-81. https://doi.org/10.1016/j.jss.2008.08.008
  • 18. Jallouli, M., Hakim, A., Znazen, A., Sahnoun, Z., Kallel, H., Zghal, K., Hammami, A., & Mhiri, R. (2009). Rifamycin lavage in the treatment of experimental intra-abdominal infection. Journal of Surgical Research, 155(2), 191-194. https://doi.org/10.1016/j.jss.2008.03.041
  • 19. Larsson, B. (1996). Efficacy of Interceed in adhesion prevention in gynecologic surgery: A review of 13 clinical studies. The Journal of Reproductive Medicine, 41(1), 27-34.
  • 20. Lorian, V., & Ernst, J. (1987). Effects of antibiotics on bacterial structure and their pathogenicity. Pathologie-Biologie, 35(10 Pt 2), 1370-1376.
  • 21. Mais, V., Ajossa, S., Piras, B., Guerriero, S., Marongiu, D., & Melis, G. B. (1995). Prevention of de-novo adhesion formation after laparoscopic myomectomy: A randomized trial to evaluate the effectiveness of an oxidized regenerated cellulose absorbable barrier. Human Reproduction, 10(12), 3133-3135. https://doi.org/10.1093/oxfordjournals.humrep.a135873
  • 22. Marvel, S. J. (2022). Concepts in sterilization. Veterinary Clinics: Small Animal Practice, 52(2), 419-436.
  • 23. Mavigök, E., Bakacak, M., Yazar, F. M., Bakacak, Z., Yaylalı, A., Boran, Ö. F., & Bahar, A. Y. (2019). A comparison in an experimental rat model of the effects on adhesion formation of different hemostatic methods used in abdominopelvic surgery. Ginekologia Polska, 90(9), 507-512. DOI: 10.5603/GP.2019.0088
  • 24. McGaw, T., Elkins, T. E., DeLancey, J. O., McNeely, S. G., & Warren, J. (1988). Assessment of intraperitoneal adhesion formation in a rat model: Can a procoagulant substance prevent adhesions?. Obstetrics & Gynecology, 71(5), 774-778.
  • 25. Nishimura, K., Bieniarz, A., Nakamura, R. M., & diZerega, G. S. (1983). Evaluation of oxidized regenerated cellulose for prevention of postoperative intraperitoneal adhesions. The Japanese Journal of Surgery, 13, 159-163.
  • 26. Oncel, M., Kurt, N., Remzi, F. H., Sensu, S. S., Vural, S., Gezen, C. F., Dalkilic, G., & Olcay, E. (2001). The effectiveness of systemic antibiotics in preventing postoperative, intraabdominal adhesions in an animal model. Journal of Surgical Research, 101(1), 52-55. https://doi.org/10.1006/jsre.2001.6245
  • 27. Pereira, B. M., Bortoto, J. B., & Fraga, G. P. (2018). Topical hemostatic agents in surgery: Review and prospects. Revista do Colégio Brasileiro de Cirurgiões, 45, e1900. https://doi.org/10.1590/0100-6991e-20181900
  • 28. Rabbani, A. H., Naseer, O., Hussain, K., Shahid, M., Ullah, Q., Ahmad, A. S., Qureshi, A. R., & Wadood, F. (2023). Small Animal Ovariohysterectomy and Avoidance of Associated Complications in Pet Practices Across Pakistan: A Current Perspective. Small Animal Advances, 2(4), 38-43. https://doi.org/10.58803/saa.v2i4.18
  • 29. Shimanuki, T., Nishimura, K., Montz, F. J., Nakamura, R. M., & Dizerega, G. S. (1987). Localized prevention of postsurgical adhesion formation and reformation with oxidized regenerated cellulose. Journal of Biomedical Materials Research, 21(2), 173-185. https://doi.org/10.1002/jbm.820210203
  • 30. Sirovy, M., Odlozilova, S., Kotek, J., Zajak, J., & Paral, J. (2023). Current options for th e prevention of postoperative intra-abdominal adhesions. Asian Journal of Surgery, 47, 77-82. https://doi.org/10.1016/j.asjsur.2023.10.001
  • 31. Slatter, D. H. (Ed.). (2003). Textbook of small animal surgery (Vol. 1). Elsevier Health Sciences.
  • 32. Suresh, A. B., Rosani, A., Patel, P., & Wadhwa, R. (2023). Rifampin. In StatPearls. StatPearls Publishing.
  • 33. Tompeck, A. J., Dowling, M., Johnson, S. B., Barie, P. S., Winchell, R. J., King, D., Slatore, C., Coughlin, S. R., & Narayan, M. (2020). A comprehensive review of topical hemostatic agents: The good, the bad, and the novel. Journal of Trauma and Acute Care Surgery, 88(1), e1-e21. DOI: 10.1097/TA.0000000000002508
  • 34. Yavuz, A., Öner, G., Taş, M., & Çınaroğlu, S. (2021). The Effects of an Absorbable Hemostat Produced From Oxidized Regenerated Cellulose on Adhesion Formation in a Rat Model. Medical Journal of Bakirkoy, 17(2), 166-172. DOI: 10.4274/BMJ.galenos.2021.30075
  • 35. Zhang, F., Bonidie, M. J., Ventrelli, S. M., & Furlan, A. (2015). Intraovarian oxidized cellulose (Surgicel) mimicking acute ovarian pathology after recent pelvic surgery. Radiology Case Reports, 10(4), 39-41. https://doi.org/10.1016/j.radcr.2015.08.002
  • 36. Zhang, S., Li, J., Chen, S., Zhang, X., Ma, J., & He, J. (2020). Oxidized cellulose-based hemostatic materials. Carbohydrate Polymers, 230, 115585. https://doi.org/10.1016/j.carbpol.2019.115585
  • 37. Zheng, Z., Zhang, W., Sun, W., Li, X., Duan, J., Cui, J., Feng, G., & Mansour, H. M. (2013). Influence of the carboxymethyl chitosan anti-adhesion solution on the TGF-β1 in a postoperative peritoneal adhesion rat. Journal of Materials Science: Materials in Medicine, 24, 2549-2559.

Ratlarda ovariohisterektomiyi takiben tek başına veya okside rejenere selüloz ile birlikte rifampisin kullanılarak intraabdominal adezyonun önlenmesi

Year 2025, Volume: 5 Issue: 1, 21 - 29, 17.03.2025
https://doi.org/10.62425/jlasp.1536699

Abstract

Bu çalışmanın amacı, tek başına veya okside rejenere selüloz (Surgicel) ile birlikte uygulanan rifampisinin, ovariohisterektomi (OVH) sonrası postoperatif intraabdominal adezyonları önlemedeki etkinliğini bir rat modelinde değerlendirmektir. Otuz iki dişi Wistar rata OVH uygulandı ve rastgele dört gruba ayrıldı: serum fizyolojik ile tedavi edilen bir kontrol grubu (C), Surgicel uygulama grubu (S), rifampisin uygulama grubu (R) ve hem Surgicel hem de rifampisin alan bir kombinasyon grubu (S+R). Yapışıklıkların gelişimi postoperatif 28. günde makroskopik ve histopatolojik olarak değerlendirilmiştir. Ayrıca, enflamatuar ve anjiyojenik yanıtları değerlendirmek için sırasıyla TNF-α için immünohistokimyasal boyama ve VEGF için immünofloresan boyama yapılmıştır. Makroskopik ve histopatolojik değerlendirmeler, rifampisin uygulamasının (R) kontrole kıyasla adezyon oluşumunun yoğunluğunu ve şiddetini önemli ölçüde azalttığını ortaya koymuştur. İlginç bir şekilde, S grubu kontrolle karşılaştırılabilir yapışıklık oranları sergilerken, S+R grubu yapışıklıklarda orta düzeyde bir azalma göstermiştir. İmmünohistokimyasal ve immünofloresan bulgular makroskopik gözlemleri destekleyerek rifampisinin adezyon oluşumuyla ilişkili enflamatuar ve fibrojenik yanıtları hafifletebileceğini göstermiştir. Rifampisin tek başına OVH sonrası karın içi yapışıklıkların oluşumunu ve şiddetini azaltma konusunda etkili olduğu gözlemlenmiştir. Surgicel ve rifampisin kombinasyonu sinerjik bir etki yaratmamıştır, çünkü tek başına Surgicel uygulaması yapışıklıkların önlenmesinde önemli bir etki göstermemiştir. Bu bulgular, Surgicel'in hemostaz için faydalı olmakla birlikte, adezyon oluşumuna potansiyel katkısı nedeniyle dikkatli olunması gerektiğini göstermektedir. Rifampisinin abdominal cerrahi sonrası adezyon oluşumunu engelleyebileceği farmakokinetik ve hücresel mekanizmaların aydınlatılması için daha fazla araştırma yapılması gerekmektedir.

References

  • 1. Akinrinmade, J. F., & Lawal, A. O. (2010). Gross and histologic evaluation of abdominal adhesions associated with chromic catgut and polypropylene sutured enteropexies in dog. International Journal of Morphology, 28(4), 1221-1225. DOI:10.4067/S0717-95022010000400037
  • 2. Alonso, J. D. M., Alves, A. L. G., Watanabe, M. J., Rodrigues, C. A., & Hussni, C. A. (2014). Peritoneal response to abdominal surgery: The role of equine abdominal adhesions and current prophylactic strategies. Veterinary Medicine International, 2014(1), 279730. https://doi.org/10.1155/2014/279730
  • 3. Ates, U., Ata, B., Ortakuz, S., Seyhan, A., & Urman, B. (2008). Prevention of adhesion formation following ovarian surgery in a standardized animal model: Comparative study of Interceed and double layer Surgicell. Journal of Obstetrics and Gynaecology Research, 34(1), 12-17. https://doi.org/10.1111/j.1447-0756.2007.00684.x
  • 4. Aysan, E., Demir, M., Kinaci, E., & Basak, F. (2005). Complications of intestinal milking: Experimental model. ANZ Journal of Surgery, 75(5), 322-325. https://doi.org/10.1111/j.1445-2197.2005.03307.x
  • 5. Barnard, J., & Millner, R. (2009). A review of topical hemostatic agents for use in cardiac surgery. The Annals of Thoracic Surgery, 88(4), 1377-1383. https://doi.org/10.1016/j.athoracsur.2009.02.092
  • 6. Bergström, M., Falk, P., & Holmdahl, L. (2006). Effect of acidosis on expression of mesothelial cell plasminogen activator inhibitor type-1. Surgical Endoscopy, 20, 1448-1452. DOI: 10.1007/s00464-005-0283-6
  • 7. Demirel, M. A., & Acar, D. B. (2012). Ovarian remnant syndrome and uterine stump pyometra in three queens. Journal of Feline Medicine and Surgery, 14(12), 913-918. https://doi.org/10.1177/1098612X12451373
  • 8. Ergin, İ., & Demirel, M. A. (2017). Kedi ve Köpeklerde Abdominal Cerrahi ve Jinekolojik Operasyonlar Sonrası İntra-Abdominal Adezyon Oluşumu ve Medikal Olarak Önlenmesi. Erciyes Üniversitesi Veteriner Fakültesi Dergisi, 14(1), 61-72.
  • 9. Falagas, M. E., & Vergidis, P. I. (2005). Irrigation with antibiotic-containing solutions for the prevention and treatment of infections. Clinical Microbiology and Infection, 11(11), 862-867. https://doi.org/10.1111/j.1469-0691.2005.01201.x
  • 10. Falk, K., Björquist, P., Strömqvist, M., & Holmdahl, L. (2001). Reduction of experimental adhesion formation by inhibition of plasminogen activator inhibitor type 1. British Journal of Surgery, 88(2), 286-289. https://doi.org/10.1046/j.1365-2168.2001.01647.x
  • 11. Fatehi Hassanabad, A., Zarzycki, A. N., Jeon, K., Dundas, J. A., Vasanthan, V., Deniset, J. F., & Fedak, P. W. (2021). Prevention of post-operative adhesions: A comprehensive review of present and emerging strategies. Biomolecules, 11(7), 1027. https://doi.org/10.3390/biom11071027
  • 12. Franceschini, G. (2019). Internal surgical use of biodegradable carbohydrate polymers. Warning for a conscious and proper use of oxidized regenerated cellulose. Carbohydrate Polymers, 216, 213-216. https://doi.org/10.1016/j.carbpol.2019.04.036
  • 13. Fu, F., Hou, Y., Jiang, W., Wang, R., & Liu, K. (2005). Escin: Inhibiting inflammation and promoting gastrointestinal transit to attenuate formation of postoperative adhesions. World Journal of Surgery, 29, 1614-1620. DOI: 10.1007/s00268-005-7870-5
  • 14. Gray, C. F., Redpath, T. W., Bainton, R., & Smith, F. W. (2001). Magnetic resonance imaging assessment of a sinus lift operation using reoxidised cellulose (Surgicel®) as graft material. Clinical Oral Implants Research, 12(5), 526-530. https://doi.org/10.1034/j.1600-0501.2001.120514.x
  • 15. Ghobrial, S., Ott, J., & Parry, J. P. (2023). An overview of postoperative intraabdominal adhesions and their role on female infertility: A narrative review. Journal of Clinical Medicine, 12(6), 2263. https://doi.org/10.3390/jcm12062263
  • 16. Güney, G., Kaya, C., Oto, G., Yıldırım, S., Özdemir, H., & Tokmak, A. (2017). Effects of quercetin and surgicel for preventing adhesions after gynecological surgery: A rat uterine horn model. Journal of Obstetrics and Gynaecology Research, 43(1), 179-184. https://doi.org/10.1111/jog.13185
  • 17. Hoffmann, N. E., Siddiqui, S. A., Agarwal, S., McKellar, S. H., Kurtz, H. J., Gettman, M. T., & Ereth, M. H. (2009). Choice of hemostatic agent influences adhesion formation in a rat cecal adhesion model. Journal of Surgical Research, 155(1), 77-81. https://doi.org/10.1016/j.jss.2008.08.008
  • 18. Jallouli, M., Hakim, A., Znazen, A., Sahnoun, Z., Kallel, H., Zghal, K., Hammami, A., & Mhiri, R. (2009). Rifamycin lavage in the treatment of experimental intra-abdominal infection. Journal of Surgical Research, 155(2), 191-194. https://doi.org/10.1016/j.jss.2008.03.041
  • 19. Larsson, B. (1996). Efficacy of Interceed in adhesion prevention in gynecologic surgery: A review of 13 clinical studies. The Journal of Reproductive Medicine, 41(1), 27-34.
  • 20. Lorian, V., & Ernst, J. (1987). Effects of antibiotics on bacterial structure and their pathogenicity. Pathologie-Biologie, 35(10 Pt 2), 1370-1376.
  • 21. Mais, V., Ajossa, S., Piras, B., Guerriero, S., Marongiu, D., & Melis, G. B. (1995). Prevention of de-novo adhesion formation after laparoscopic myomectomy: A randomized trial to evaluate the effectiveness of an oxidized regenerated cellulose absorbable barrier. Human Reproduction, 10(12), 3133-3135. https://doi.org/10.1093/oxfordjournals.humrep.a135873
  • 22. Marvel, S. J. (2022). Concepts in sterilization. Veterinary Clinics: Small Animal Practice, 52(2), 419-436.
  • 23. Mavigök, E., Bakacak, M., Yazar, F. M., Bakacak, Z., Yaylalı, A., Boran, Ö. F., & Bahar, A. Y. (2019). A comparison in an experimental rat model of the effects on adhesion formation of different hemostatic methods used in abdominopelvic surgery. Ginekologia Polska, 90(9), 507-512. DOI: 10.5603/GP.2019.0088
  • 24. McGaw, T., Elkins, T. E., DeLancey, J. O., McNeely, S. G., & Warren, J. (1988). Assessment of intraperitoneal adhesion formation in a rat model: Can a procoagulant substance prevent adhesions?. Obstetrics & Gynecology, 71(5), 774-778.
  • 25. Nishimura, K., Bieniarz, A., Nakamura, R. M., & diZerega, G. S. (1983). Evaluation of oxidized regenerated cellulose for prevention of postoperative intraperitoneal adhesions. The Japanese Journal of Surgery, 13, 159-163.
  • 26. Oncel, M., Kurt, N., Remzi, F. H., Sensu, S. S., Vural, S., Gezen, C. F., Dalkilic, G., & Olcay, E. (2001). The effectiveness of systemic antibiotics in preventing postoperative, intraabdominal adhesions in an animal model. Journal of Surgical Research, 101(1), 52-55. https://doi.org/10.1006/jsre.2001.6245
  • 27. Pereira, B. M., Bortoto, J. B., & Fraga, G. P. (2018). Topical hemostatic agents in surgery: Review and prospects. Revista do Colégio Brasileiro de Cirurgiões, 45, e1900. https://doi.org/10.1590/0100-6991e-20181900
  • 28. Rabbani, A. H., Naseer, O., Hussain, K., Shahid, M., Ullah, Q., Ahmad, A. S., Qureshi, A. R., & Wadood, F. (2023). Small Animal Ovariohysterectomy and Avoidance of Associated Complications in Pet Practices Across Pakistan: A Current Perspective. Small Animal Advances, 2(4), 38-43. https://doi.org/10.58803/saa.v2i4.18
  • 29. Shimanuki, T., Nishimura, K., Montz, F. J., Nakamura, R. M., & Dizerega, G. S. (1987). Localized prevention of postsurgical adhesion formation and reformation with oxidized regenerated cellulose. Journal of Biomedical Materials Research, 21(2), 173-185. https://doi.org/10.1002/jbm.820210203
  • 30. Sirovy, M., Odlozilova, S., Kotek, J., Zajak, J., & Paral, J. (2023). Current options for th e prevention of postoperative intra-abdominal adhesions. Asian Journal of Surgery, 47, 77-82. https://doi.org/10.1016/j.asjsur.2023.10.001
  • 31. Slatter, D. H. (Ed.). (2003). Textbook of small animal surgery (Vol. 1). Elsevier Health Sciences.
  • 32. Suresh, A. B., Rosani, A., Patel, P., & Wadhwa, R. (2023). Rifampin. In StatPearls. StatPearls Publishing.
  • 33. Tompeck, A. J., Dowling, M., Johnson, S. B., Barie, P. S., Winchell, R. J., King, D., Slatore, C., Coughlin, S. R., & Narayan, M. (2020). A comprehensive review of topical hemostatic agents: The good, the bad, and the novel. Journal of Trauma and Acute Care Surgery, 88(1), e1-e21. DOI: 10.1097/TA.0000000000002508
  • 34. Yavuz, A., Öner, G., Taş, M., & Çınaroğlu, S. (2021). The Effects of an Absorbable Hemostat Produced From Oxidized Regenerated Cellulose on Adhesion Formation in a Rat Model. Medical Journal of Bakirkoy, 17(2), 166-172. DOI: 10.4274/BMJ.galenos.2021.30075
  • 35. Zhang, F., Bonidie, M. J., Ventrelli, S. M., & Furlan, A. (2015). Intraovarian oxidized cellulose (Surgicel) mimicking acute ovarian pathology after recent pelvic surgery. Radiology Case Reports, 10(4), 39-41. https://doi.org/10.1016/j.radcr.2015.08.002
  • 36. Zhang, S., Li, J., Chen, S., Zhang, X., Ma, J., & He, J. (2020). Oxidized cellulose-based hemostatic materials. Carbohydrate Polymers, 230, 115585. https://doi.org/10.1016/j.carbpol.2019.115585
  • 37. Zheng, Z., Zhang, W., Sun, W., Li, X., Duan, J., Cui, J., Feng, G., & Mansour, H. M. (2013). Influence of the carboxymethyl chitosan anti-adhesion solution on the TGF-β1 in a postoperative peritoneal adhesion rat. Journal of Materials Science: Materials in Medicine, 24, 2549-2559.
There are 37 citations in total.

Details

Primary Language English
Subjects Zoology (Other)
Journal Section Research Articles
Authors

Damla Tuğçe Okur 0000-0003-2733-2155

Şifanur Aydin 0000-0002-8332-0514

Sıtkıcan Okur 0000-0003-2620-897X

Ayşe Gölgeli Bedir 0000-0002-9798-8638

Ömer Tarık Orhun 0000-0003-4184-8879

Vefa Tohumcu 0000-0003-4062-7513

Serkan Yıldırım 0000-0003-2457-3367

Yavuz Sağlam 0000-0002-7861-9642

Şaab Elban 0009-0006-9631-1242

Publication Date March 17, 2025
Submission Date August 21, 2024
Acceptance Date December 4, 2024
Published in Issue Year 2025 Volume: 5 Issue: 1

Cite

EndNote Okur DT, Aydin Ş, Okur S, Gölgeli Bedir A, Orhun ÖT, Tohumcu V, Yıldırım S, Sağlam Y, Elban Ş (March 1, 2025) Prevention of intraabdominal adhesion using rifampicin alone or in combination with oxidized regenerated cellulose following ovariohysterectomy in rats. Laboratuvar Hayvanları Bilimi ve Uygulamaları Dergisi 5 1 21–29.

Content of this journal is licensed under a Creative Commons Attribution NonCommercial 4.0 International License

29929