Research Article
BibTex RIS Cite

Investigation of the effects of chrysin on intestinal ischemia-reperfusion via apoptotic, oxidative stress, inflammation, and autophagy parameters

Year 2025, Volume: 5 Issue: 1, 49 - 59, 17.03.2025
https://doi.org/10.62425/jlasp.1574905

Abstract

Aim: This study aimed to investigate chrysin's molecular, biochemical, and histological effects in an experimental intestinal ischemia/reperfusion (IR) model and to reveal possible protective mechanisms.
Material-Methods: 35 Wistar rats were randomly divided into five groups: Control, CHR, IR, IR+CHR25, IR+CHR50. The IR model was established by inducing ischemia by ligating the superior mesenteric artery for one hour and restoring blood flow for two hours. In the study, MDA and GSH levels were analysed by manual biochemical method; SOD, CAT, GPx activities and NF-κB and NO levels by ELISA method; caspase-3, Beclin-1, LC3A, PERK, ATF-6 mRNA transcription levels by RT-PCR method. In addition, tissue structure was examined histologically.
Results: MDA levels were doubled in the IR group and decreased with CHR (p< .05). In addition, CHR increased SOD, CAT, and GPx activities and GSH levels which decreased due to IR (p< .05). Inflammation markers NF-κB and NO were increased; and decreased with CHR (p< .05). Apoptosis marker caspase-3 increased in IR and decreased with CHR (p< .05). Autophagy markers Beclin-1 and LC3A were increased by CHR (p< .05); endoplasmic reticulum stress markers PERK and ATF-6 were increased in IR and decreased by CHR (p< .05). Severe histopathologic changes were observed in the IR and improved with CHR treatment.
Conclusion: While IR causes damage to intestinal tissue, the antioxidant and anti-inflammatory properties of CHR have revealed its therapeutic potential against IR injury.

References

  • Afolabi, O. A., Hamed, M. A., Anyogu, D. C., Adeyemi, D. H., Odetayo, A. F., & Akhigbe, R. E. (2022). Atorvastatin-mediated downregulation of VCAM-1 and XO/UA/caspase 3 signaling averts oxidative damage and apoptosis induced by ovarian ischaemia/reperfusion injury. Redox report, 27(1), 212-220. https://doi.org/10.1080/13510002.2022.2129192
  • Agartan, E. S., Mogulkoc, R., Baltaci, A. K., Menevse, E., Dasdelen, D., & Avunduk, M. C. (2022). 3′, 4′-Dihydroxyflavonol (DiOHF) prevents DNA damage, lipid peroxidation and inflammation in ovarian ischaemia-reperfusion injury of rats. Journal of obstetrics and gynaecology, 42(2), 338-345. https://doi.org/ 10.1080/01443615.2021.1916813
  • Akaras, N., Kandemir, F. M., Şimşek, H., Gür, C., & Aygörmez, S. (2023a). Antioxidant, Antiinflammatory, and Antiapoptotic Effects of Rutin in Spleen Toxicity Induced by Sodium Valproate in Rats. Türk doğa ve fen dergisi, 12(2), 138-144. https://doi.org/10.46810/tdfd.1299663
  • Akaras, N., Gür, C., Şimşek, H., & Tuncer, S. Ç. (2023b). Effects of Quercetin on Cypermethrin-Induced Stomach Injury: The Role of Oxidative Stress, Inflammation, and Apoptosis. Gümüşhane üniversitesi sağlık bilimleri dergisi, 12(2), 556-566. https://doi.org/10.37989/gumussagbil.1225539
  • Aksu, E. H., Kandemir, F. M., Küçükler, S., & Mahamadu, A. (2018). Improvement in colistin-induced reproductive damage, apoptosis, and autophagy in testes via reducing oxidative stress by chrysin. Journal of biochemical and molecular toxicology, 32(11), e22201. https://doi.org/10.1002/jbt.22201
  • Ali, F. F., Ahmed, A. F., & Ali, D. M. E. (2019). Underlying mechanisms behind the protective effect of angiotensin (1–7) in experimental rat model of ovarian ischemia reperfusion injury. Life sciences, 235, 116840. https://doi.org/10.1016/j.lfs.2019.116840
  • Aydin, G., Gökçimen, A., Öncü, M., Çicek, E., Karahan, N., & Gökalp, O. (2003). Histopathologic changes in liver and renal tissues induced by different doses of diclofenac sodium in rats. Turkish journal of veterinary & animal sciences, 27(5), 1131-1140.
  • Badak B, Turk O, Caga T, Burukoglu D. (2014). The protective effect of milrinone on ischemia/reperfusion injury on superior mesenteric artery ligated rats. Journal of surgical arts 7 (1), 1-6.
  • Brandt, L. J., & Boley, S. J. (1993). Ischemic and vascular lesions of the bowel. In M. H. Sleisenger & J. S. Fordtran (Eds.), Gastrointestinal disease (5th ed., pp. 1822–1844). W.B. Saunders.
  • Celik H, Kucukler S, Ozdemir S, Comakli S, Gur C, Kandemir FM, et al. (2020). Lycopene protects against central and peripheral neuropathy by inhibiting oxaliplatin-induced ATF-6 pathway, apoptosis, inflammation and oxidative stress in brains and sciatic tissues of rats. Neurotoxicology. 80:29-40. https://doi.org/10.1016/j.neuro.2020.06.005
  • Chiu, C. J., McArdle, A. H., Brown, R., Scott, H. J., & Gurd, F. N. (1970). Intestinal mucosal lesion in low-flow states: I. A morphological, hemodynamic, and metabolic reappraisal. Archives of surgery, 101(4), 478-483. https://doi.org/10.1001/archsurg.1970.01340280030009
  • Grace, P. (1994). Ischemia-reperfusion injury/PA Grace. British journal of surgery, 81(5), 637-647. https://doi.org/10.1002/bjs.1800810504
  • Güvenç, M., Yüksel, M., Kutlu, T., Etyemez, M., Gökçek, İ., & Cellat, M. (2024). Protective effects of esculetin against ovary ischemia–reperfusion injury model in rats. Journal of biochemical and molecular toxicology, 38(1), e23528. https://doi.org/ 10.1002/jbt.23528
  • He, C., & Levine, B. (2010). The beclin 1 interactome. Current opinion in cell biology, 22, 140–149. https://doi.org/10.1016/j.ceb.2010.01.001
  • Ileriturk, M., Ileriturk, D., Kandemir, O., Akaras, N., Simsek, H., Erdogan, E., & Kandemir, F. M. (2024). Naringin attenuates oxaliplatin‐induced nephrotoxicity and hepatotoxicity: A molecular, biochemical, and histopathological approach in a rat model. Journal of biochemical and molecular toxicology, 38(1), e23604. https://doi.org/10.1002/jbt.23604
  • Ileriturk, M., Kandemir, O., Akaras, N., Simsek, H., Genc, A., & Kandemir, F. M. (2023). Hesperidin has a protective effect on paclitaxel-induced testicular toxicity through regulating oxidative stress, apoptosis, inflammation and endoplasmic reticulum stress. Reproductive toxicology, 118, 108369. https://doi.org/10.1016/j.reprotox.2023.108369
  • Kamel, R., El Morsy, E. M., Elsherbiny, M. E., & Nour‐Eldin, M. (2022). Chrysin promotes angiogenesis in rat hindlimb ischemia: Impact on PI3K/Akt/mTOR signaling pathway and autophagy. Drug development research, 83(5), 1226-1237. https://doi.org/10.1002/ddr.21954
  • Kandemir, F. M., Kucukler, S., Eldutar, E., Caglayan, C., & Gülçin, İ. (2017). Chrysin Protects Rat Kidney from Paracetamol-Induced Oxidative Stress, Inflammation, Apoptosis, and Autophagy: A Multi-Biomarker Approach. Scientia pharmaceutica, 85(1), 4. https://doi.org/10.3390/scipharm85010004
  • Kandemir, F. M., Ileriturk, M., & Gur, C. (2022). Rutin protects rat liver and kidney from sodium valproate-induce damage by attenuating oxidative stress, ER stress, inflammation, apoptosis and autophagy. Molecular biology reports, 49(7), 6063-6074. https://doi.org/10.1007/s11033-022-07395-0
  • Kankılıç, N. A., Küçükler, S., Gür, C., Akarsu, S. A., Akaras, N., Şimşek, H., et al. (2024). Naringin protects against paclitaxel‐induced toxicity in rat testicular tissues by regulating genes in pro‐inflammatory cytokines, oxidative stress, apoptosis, and JNK/MAPK signaling pathways. Journal of biochemical and molecular toxicology, 38(7), e23751. https://doi.org/10.1002/jbt.23751
  • Kuzu, M. A., Köksoy, C., Kale, I. T., Tanık, A., Terzi, C., & Elhan, A. H. (1998). Reperfusion injury delays healing of intestinal anastomosis in a rat. The American journal of surgery, 176(4), 348-351. https://doi.org/10.1016/s0002-9610(98)00198-6
  • Li, Y., Xu, B., Xu, M., Chen, D., Xiong, Y., Lian, M., ... & Lin, Y. (2017). 6-Gingerol protects intestinal barrier from ischemia/reperfusion-induced damage via inhibition of p38 MAPK to NF-κB signalling. Pharmacological research, 119, 137-148. https://doi.org/10.1016/j.phrs.2017.01.026
  • Livak, K.J., and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25(4), 402–408. https://doi.org/10.1006/meth.2001.1262
  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of biological chemistry, 193(1), 265–275.
  • Megison, S. M., Horton, J. W., Chao, H. E., & Walker, P. B. (1990). A new model for intestinal ischemia in the rat. Journal of surgical research, 49(2), 168-173. https://doi.org/ 10.1016/0022-4804(90)90257-3
  • Osmanlıoğlu, Ş., Arslan, M., Dağ, R. O., Yığman, Z., Ceyhan, M. Ş., Er, F., & Kavutçu, M. (2023). Artemisinin reduces acute ovarian ischemia-reperfusion injury in rats. Reproductive toxicology, 119, 108417. https://doi.org/10.1016/j.reprotox.2023.108417
  • Park, P. O., & Haglund, U. L. F. (1992). Regeneration of small bowel mucosa after intestinal ischemia. Critical care medicine, 20(1), 135-139. https://doi.org/10.1097/00003246-199201000-00026
  • Placer, Z. A., Cushman, L. L., & Johnson, B. C. (1966). Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Analytical biochemistry, 16(2), 359–364. https://doi.org/10.1016/0003-2697(66)90167-9
  • Rana S. V. S. (2020). Endoplasmic Reticulum Stress Induced by Toxic Elements-a Review of Recent Developments. Biological trace element research, 196(1), 10–19. https://doi.org/10.1007/s12011-019-01903-3
  • Refaie, M. M., & El-Hussieny, M. (2018). Protective effect of pioglitazone on ovarian ischemia reperfusion injury of female rats via modulation of peroxisome proliferator activated receptor gamma and heme-oxygenase 1. International immunopharmacology, 62, 7-14. https://doi.org/10.1016/j.intimp.2018.06.037
  • Sedlak, J., & Lindsay, R. H. (1968). Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent. Analytical biochemistry, 25(1), 192–205. https://doi.org/10.1016/0003-2697(68)90092-4
  • Semis, H. S., Kandemir, F. M., Kaynar, O., Dogan, T., & Arikan, S. M. (2021). The protective effects of hesperidin against paclitaxel-induced peripheral neuropathy in rats. Life sciences, 287, 120104. https://doi.org/10.1016/j.lfs.2021.120104
  • Simsek, H., & Akaras, N. (2023). Acacetin ameliorates acetylsalicylic acid-induced gastric ulcer in rats by interfering with oxidative stress, inflammation, and apoptosis. International journal of medical biochemistry, 6(2). https://doi.org/10.14744/ijmb.2023.07830
  • Şimşek, H., Akaras, N., Gür, C., Küçükler, S., & Kandemir, F. M. (2023a). Beneficial effects of Chrysin on Cadmium‐induced nephrotoxicity in rats: Modulating the levels of Nrf2/HO‐1, RAGE/NLRP3, and Caspase-3/Bax/Bcl-2 signaling pathways. Gene, 875, 147502. https://doi.org/10.1016/j.gene.2023.147502
  • Şimşek, H., Küçükler, S., Gür, C., Akaras, N., & Kandemir, F. M. (2023b). Protective effects of sinapic acid against lead acetate-induced nephrotoxicity: a multi-biomarker approach. Environmental science and pollution research, 30(45), 101208-101222. https://doi.org/10.1007/s11356-023-29410-y Şimşek, H., Küçükler, S., Gür, C., İleritürk, M., Aygörmez, S., & Kandemir, F. M. (2023c). Protective effects of zingerone against sodium arsenite-induced lung toxicity: A multi-biomarker approach. Iranian journal of basic medical sciences, 26(9), 1098. https://doi.org/10.22038/IJBMS.2023.71905.15623
  • Talebi, M., Talebi, M., Farkhondeh, T., Kopustinskiene, D. M., Simal-Gandara, J., Bernatoniene, J., & Samarghandian, S. (2021). An updated review on the versatile role of chrysin in neurological diseases: Chemistry, pharmacology, and drug delivery approaches. Biomedicine & pharmacotherapy, 141, 111906. https://doi.org/10.1016/j.biopha.2021.111906
  • Yakut, S., Atcalı, T., Çaglayan, C., Ulucan, A., Kandemir, F. M., Kara, A., & Anuk, T. (2024). Therapeutic Potential of Silymarin in Mitigating Paclitaxel-Induced Hepatotoxicity and Nephrotoxicity: Insights into Oxidative Stress, Inflammation, and Apoptosis in Rats. Balkan medical journal, 41(3), 193. https://doi.org/10.4274/balkanmedj.galenos.2024.2024-1-60
  • Yesildag, K., Gur, C., Ileriturk, M., & Kandemir, F. M. (2022). Evaluation of oxidative stress, inflammation, apoptosis, oxidative DNA damage and metalloproteinases in the lungs of rats treated with cadmium and carvacrol. Molecular biology reports, 1-11. https://doi.org/10.1007/s11033-021-06948-z
  • Yıldız, M. O., Çelik, H., Caglayan, C., Kandemir, F. M., Gür, C., Bayav, İ., ... & Kandemir, Ö. (2022). Neuromodulatory effects of hesperidin against sodium fluoride-induced neurotoxicity in rats: Involvement of neuroinflammation, endoplasmic reticulum stress, apoptosis and autophagy. Neurotoxicology, 90, 197-204. https://doi.org/10.1016/j.neuro.2022.04.002
  • Zhou, H., Wang, S., Hu, S., Chen, Y., & Ren, J. (2018). ER–mitochondria microdomains in cardiac ischemia–reperfusion injury: A fresh perspective. Frontiers in physiology, 9, 755. https://doi.org/10.3389/fphys.2018.00755
  • Zou, L., Attuwaybi, B., & Kone, B. C. (2003). Effects of NF-kappa B inhibition on mesenteric ischemia-reperfusion injury. American journal of physiology. Gastrointestinal and liver physiology, 284(4), G713–G721. https://doi.org/10.1152/ajpgi.00431.2002

Chrysin'in bağırsak iskemi-reperfüzyonu üzerindeki etkilerinin apoptotik, oksidatif stres, inflamasyon ve otofaji parametreleri aracılığıyla araştırılması

Year 2025, Volume: 5 Issue: 1, 49 - 59, 17.03.2025
https://doi.org/10.62425/jlasp.1574905

Abstract

Amaç: Bu çalışmanın amacı, deneysel bağırsak iskemi/reperfüzyon (IR) modelinde chrysin'in moleküler, biyokimyasal ve histolojik etkilerini araştırmak ve olası koruyucu mekanizmaları ortaya çıkarmaktır.
Materyal-Metod: 35 Wistar sıçan rastgele beş gruba ayrıldı: Kontrol, CHR, IR, IR+CHR25, IR+CHR50. IR modeli, superior mezenterik arterin bir saat süreyle bağlanmasıyla iskemi oluşturularak ve ardından iki saat süreyle kan akışının yeniden sağlanmasıyla oluşturulmuştur. Çalışmada manuel biyokimyasal yöntemle MDA ve GSH düzeyleri; ELISA yöntemiyle SOD, CAT, GPx aktiviteleri ile NF-κB, ve NO düzeyleri; RT-PCR yöntemiyle caspase-3, Beclin-1, LC3A, PERK, ATF-6 mRNA transkripsiyon düzeyleri analiz edildi. Ayrıca, histolojik olarak doku yapısı incelendi.
Bulgular: MDA düzeyleri IR grubunda iki katına çıkarken, CHR ile azaldı (p< .05). Ayrıca CHR, IR’ye bağlı azalan SOD, CAT ve GPx aktiviteleri ile GSH düzeylerini arttırdı (p< .05). İnflamasyon belirteçleri NF-κB, ve NO artmış; CHR ile azalmıştır (p< .05). Apoptoz belirteçlerinden kaspaz-3 IR'de arttı ve CHR ile azaldı (p< .05). Otofaji belirteçleri Beclin-1 ve LC3A CHR ile arttı (p< .05); endoplazmik retikulum stresi belirteçleri PERK ve ATF-6 IR'de arttı ve CHR ile azaldı (p< .05). IR'de ciddi histopatolojik değişiklikler gözlendi ve CHR tedavisi ile düzeldi.
Sonuç: IR, bağırsak dokusunda hasara yol açarken, CHR'nin antioksidan ve anti-inflamatuvar özellikleri, bağırsak IR hasarına karşı terapötik potansiyelini ortaya koymuştur.

References

  • Afolabi, O. A., Hamed, M. A., Anyogu, D. C., Adeyemi, D. H., Odetayo, A. F., & Akhigbe, R. E. (2022). Atorvastatin-mediated downregulation of VCAM-1 and XO/UA/caspase 3 signaling averts oxidative damage and apoptosis induced by ovarian ischaemia/reperfusion injury. Redox report, 27(1), 212-220. https://doi.org/10.1080/13510002.2022.2129192
  • Agartan, E. S., Mogulkoc, R., Baltaci, A. K., Menevse, E., Dasdelen, D., & Avunduk, M. C. (2022). 3′, 4′-Dihydroxyflavonol (DiOHF) prevents DNA damage, lipid peroxidation and inflammation in ovarian ischaemia-reperfusion injury of rats. Journal of obstetrics and gynaecology, 42(2), 338-345. https://doi.org/ 10.1080/01443615.2021.1916813
  • Akaras, N., Kandemir, F. M., Şimşek, H., Gür, C., & Aygörmez, S. (2023a). Antioxidant, Antiinflammatory, and Antiapoptotic Effects of Rutin in Spleen Toxicity Induced by Sodium Valproate in Rats. Türk doğa ve fen dergisi, 12(2), 138-144. https://doi.org/10.46810/tdfd.1299663
  • Akaras, N., Gür, C., Şimşek, H., & Tuncer, S. Ç. (2023b). Effects of Quercetin on Cypermethrin-Induced Stomach Injury: The Role of Oxidative Stress, Inflammation, and Apoptosis. Gümüşhane üniversitesi sağlık bilimleri dergisi, 12(2), 556-566. https://doi.org/10.37989/gumussagbil.1225539
  • Aksu, E. H., Kandemir, F. M., Küçükler, S., & Mahamadu, A. (2018). Improvement in colistin-induced reproductive damage, apoptosis, and autophagy in testes via reducing oxidative stress by chrysin. Journal of biochemical and molecular toxicology, 32(11), e22201. https://doi.org/10.1002/jbt.22201
  • Ali, F. F., Ahmed, A. F., & Ali, D. M. E. (2019). Underlying mechanisms behind the protective effect of angiotensin (1–7) in experimental rat model of ovarian ischemia reperfusion injury. Life sciences, 235, 116840. https://doi.org/10.1016/j.lfs.2019.116840
  • Aydin, G., Gökçimen, A., Öncü, M., Çicek, E., Karahan, N., & Gökalp, O. (2003). Histopathologic changes in liver and renal tissues induced by different doses of diclofenac sodium in rats. Turkish journal of veterinary & animal sciences, 27(5), 1131-1140.
  • Badak B, Turk O, Caga T, Burukoglu D. (2014). The protective effect of milrinone on ischemia/reperfusion injury on superior mesenteric artery ligated rats. Journal of surgical arts 7 (1), 1-6.
  • Brandt, L. J., & Boley, S. J. (1993). Ischemic and vascular lesions of the bowel. In M. H. Sleisenger & J. S. Fordtran (Eds.), Gastrointestinal disease (5th ed., pp. 1822–1844). W.B. Saunders.
  • Celik H, Kucukler S, Ozdemir S, Comakli S, Gur C, Kandemir FM, et al. (2020). Lycopene protects against central and peripheral neuropathy by inhibiting oxaliplatin-induced ATF-6 pathway, apoptosis, inflammation and oxidative stress in brains and sciatic tissues of rats. Neurotoxicology. 80:29-40. https://doi.org/10.1016/j.neuro.2020.06.005
  • Chiu, C. J., McArdle, A. H., Brown, R., Scott, H. J., & Gurd, F. N. (1970). Intestinal mucosal lesion in low-flow states: I. A morphological, hemodynamic, and metabolic reappraisal. Archives of surgery, 101(4), 478-483. https://doi.org/10.1001/archsurg.1970.01340280030009
  • Grace, P. (1994). Ischemia-reperfusion injury/PA Grace. British journal of surgery, 81(5), 637-647. https://doi.org/10.1002/bjs.1800810504
  • Güvenç, M., Yüksel, M., Kutlu, T., Etyemez, M., Gökçek, İ., & Cellat, M. (2024). Protective effects of esculetin against ovary ischemia–reperfusion injury model in rats. Journal of biochemical and molecular toxicology, 38(1), e23528. https://doi.org/ 10.1002/jbt.23528
  • He, C., & Levine, B. (2010). The beclin 1 interactome. Current opinion in cell biology, 22, 140–149. https://doi.org/10.1016/j.ceb.2010.01.001
  • Ileriturk, M., Ileriturk, D., Kandemir, O., Akaras, N., Simsek, H., Erdogan, E., & Kandemir, F. M. (2024). Naringin attenuates oxaliplatin‐induced nephrotoxicity and hepatotoxicity: A molecular, biochemical, and histopathological approach in a rat model. Journal of biochemical and molecular toxicology, 38(1), e23604. https://doi.org/10.1002/jbt.23604
  • Ileriturk, M., Kandemir, O., Akaras, N., Simsek, H., Genc, A., & Kandemir, F. M. (2023). Hesperidin has a protective effect on paclitaxel-induced testicular toxicity through regulating oxidative stress, apoptosis, inflammation and endoplasmic reticulum stress. Reproductive toxicology, 118, 108369. https://doi.org/10.1016/j.reprotox.2023.108369
  • Kamel, R., El Morsy, E. M., Elsherbiny, M. E., & Nour‐Eldin, M. (2022). Chrysin promotes angiogenesis in rat hindlimb ischemia: Impact on PI3K/Akt/mTOR signaling pathway and autophagy. Drug development research, 83(5), 1226-1237. https://doi.org/10.1002/ddr.21954
  • Kandemir, F. M., Kucukler, S., Eldutar, E., Caglayan, C., & Gülçin, İ. (2017). Chrysin Protects Rat Kidney from Paracetamol-Induced Oxidative Stress, Inflammation, Apoptosis, and Autophagy: A Multi-Biomarker Approach. Scientia pharmaceutica, 85(1), 4. https://doi.org/10.3390/scipharm85010004
  • Kandemir, F. M., Ileriturk, M., & Gur, C. (2022). Rutin protects rat liver and kidney from sodium valproate-induce damage by attenuating oxidative stress, ER stress, inflammation, apoptosis and autophagy. Molecular biology reports, 49(7), 6063-6074. https://doi.org/10.1007/s11033-022-07395-0
  • Kankılıç, N. A., Küçükler, S., Gür, C., Akarsu, S. A., Akaras, N., Şimşek, H., et al. (2024). Naringin protects against paclitaxel‐induced toxicity in rat testicular tissues by regulating genes in pro‐inflammatory cytokines, oxidative stress, apoptosis, and JNK/MAPK signaling pathways. Journal of biochemical and molecular toxicology, 38(7), e23751. https://doi.org/10.1002/jbt.23751
  • Kuzu, M. A., Köksoy, C., Kale, I. T., Tanık, A., Terzi, C., & Elhan, A. H. (1998). Reperfusion injury delays healing of intestinal anastomosis in a rat. The American journal of surgery, 176(4), 348-351. https://doi.org/10.1016/s0002-9610(98)00198-6
  • Li, Y., Xu, B., Xu, M., Chen, D., Xiong, Y., Lian, M., ... & Lin, Y. (2017). 6-Gingerol protects intestinal barrier from ischemia/reperfusion-induced damage via inhibition of p38 MAPK to NF-κB signalling. Pharmacological research, 119, 137-148. https://doi.org/10.1016/j.phrs.2017.01.026
  • Livak, K.J., and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25(4), 402–408. https://doi.org/10.1006/meth.2001.1262
  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of biological chemistry, 193(1), 265–275.
  • Megison, S. M., Horton, J. W., Chao, H. E., & Walker, P. B. (1990). A new model for intestinal ischemia in the rat. Journal of surgical research, 49(2), 168-173. https://doi.org/ 10.1016/0022-4804(90)90257-3
  • Osmanlıoğlu, Ş., Arslan, M., Dağ, R. O., Yığman, Z., Ceyhan, M. Ş., Er, F., & Kavutçu, M. (2023). Artemisinin reduces acute ovarian ischemia-reperfusion injury in rats. Reproductive toxicology, 119, 108417. https://doi.org/10.1016/j.reprotox.2023.108417
  • Park, P. O., & Haglund, U. L. F. (1992). Regeneration of small bowel mucosa after intestinal ischemia. Critical care medicine, 20(1), 135-139. https://doi.org/10.1097/00003246-199201000-00026
  • Placer, Z. A., Cushman, L. L., & Johnson, B. C. (1966). Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Analytical biochemistry, 16(2), 359–364. https://doi.org/10.1016/0003-2697(66)90167-9
  • Rana S. V. S. (2020). Endoplasmic Reticulum Stress Induced by Toxic Elements-a Review of Recent Developments. Biological trace element research, 196(1), 10–19. https://doi.org/10.1007/s12011-019-01903-3
  • Refaie, M. M., & El-Hussieny, M. (2018). Protective effect of pioglitazone on ovarian ischemia reperfusion injury of female rats via modulation of peroxisome proliferator activated receptor gamma and heme-oxygenase 1. International immunopharmacology, 62, 7-14. https://doi.org/10.1016/j.intimp.2018.06.037
  • Sedlak, J., & Lindsay, R. H. (1968). Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent. Analytical biochemistry, 25(1), 192–205. https://doi.org/10.1016/0003-2697(68)90092-4
  • Semis, H. S., Kandemir, F. M., Kaynar, O., Dogan, T., & Arikan, S. M. (2021). The protective effects of hesperidin against paclitaxel-induced peripheral neuropathy in rats. Life sciences, 287, 120104. https://doi.org/10.1016/j.lfs.2021.120104
  • Simsek, H., & Akaras, N. (2023). Acacetin ameliorates acetylsalicylic acid-induced gastric ulcer in rats by interfering with oxidative stress, inflammation, and apoptosis. International journal of medical biochemistry, 6(2). https://doi.org/10.14744/ijmb.2023.07830
  • Şimşek, H., Akaras, N., Gür, C., Küçükler, S., & Kandemir, F. M. (2023a). Beneficial effects of Chrysin on Cadmium‐induced nephrotoxicity in rats: Modulating the levels of Nrf2/HO‐1, RAGE/NLRP3, and Caspase-3/Bax/Bcl-2 signaling pathways. Gene, 875, 147502. https://doi.org/10.1016/j.gene.2023.147502
  • Şimşek, H., Küçükler, S., Gür, C., Akaras, N., & Kandemir, F. M. (2023b). Protective effects of sinapic acid against lead acetate-induced nephrotoxicity: a multi-biomarker approach. Environmental science and pollution research, 30(45), 101208-101222. https://doi.org/10.1007/s11356-023-29410-y Şimşek, H., Küçükler, S., Gür, C., İleritürk, M., Aygörmez, S., & Kandemir, F. M. (2023c). Protective effects of zingerone against sodium arsenite-induced lung toxicity: A multi-biomarker approach. Iranian journal of basic medical sciences, 26(9), 1098. https://doi.org/10.22038/IJBMS.2023.71905.15623
  • Talebi, M., Talebi, M., Farkhondeh, T., Kopustinskiene, D. M., Simal-Gandara, J., Bernatoniene, J., & Samarghandian, S. (2021). An updated review on the versatile role of chrysin in neurological diseases: Chemistry, pharmacology, and drug delivery approaches. Biomedicine & pharmacotherapy, 141, 111906. https://doi.org/10.1016/j.biopha.2021.111906
  • Yakut, S., Atcalı, T., Çaglayan, C., Ulucan, A., Kandemir, F. M., Kara, A., & Anuk, T. (2024). Therapeutic Potential of Silymarin in Mitigating Paclitaxel-Induced Hepatotoxicity and Nephrotoxicity: Insights into Oxidative Stress, Inflammation, and Apoptosis in Rats. Balkan medical journal, 41(3), 193. https://doi.org/10.4274/balkanmedj.galenos.2024.2024-1-60
  • Yesildag, K., Gur, C., Ileriturk, M., & Kandemir, F. M. (2022). Evaluation of oxidative stress, inflammation, apoptosis, oxidative DNA damage and metalloproteinases in the lungs of rats treated with cadmium and carvacrol. Molecular biology reports, 1-11. https://doi.org/10.1007/s11033-021-06948-z
  • Yıldız, M. O., Çelik, H., Caglayan, C., Kandemir, F. M., Gür, C., Bayav, İ., ... & Kandemir, Ö. (2022). Neuromodulatory effects of hesperidin against sodium fluoride-induced neurotoxicity in rats: Involvement of neuroinflammation, endoplasmic reticulum stress, apoptosis and autophagy. Neurotoxicology, 90, 197-204. https://doi.org/10.1016/j.neuro.2022.04.002
  • Zhou, H., Wang, S., Hu, S., Chen, Y., & Ren, J. (2018). ER–mitochondria microdomains in cardiac ischemia–reperfusion injury: A fresh perspective. Frontiers in physiology, 9, 755. https://doi.org/10.3389/fphys.2018.00755
  • Zou, L., Attuwaybi, B., & Kone, B. C. (2003). Effects of NF-kappa B inhibition on mesenteric ischemia-reperfusion injury. American journal of physiology. Gastrointestinal and liver physiology, 284(4), G713–G721. https://doi.org/10.1152/ajpgi.00431.2002
There are 41 citations in total.

Details

Primary Language English
Subjects Biochemistry and Cell Biology (Other)
Journal Section Research Articles
Authors

Ayşe Betül Öztürk 0000-0001-7773-5978

Nurhan Akaras 0000-0002-8457-9448

Hasan Şimşek 0000-0001-5573-4923

Fatih Mehmet Kandemir 0000-0002-8490-2479

Publication Date March 17, 2025
Submission Date October 28, 2024
Acceptance Date February 19, 2025
Published in Issue Year 2025 Volume: 5 Issue: 1

Cite

EndNote Öztürk AB, Akaras N, Şimşek H, Kandemir FM (March 1, 2025) Investigation of the effects of chrysin on intestinal ischemia-reperfusion via apoptotic, oxidative stress, inflammation, and autophagy parameters. Laboratuvar Hayvanları Bilimi ve Uygulamaları Dergisi 5 1 49–59.

Content of this journal is licensed under a Creative Commons Attribution NonCommercial 4.0 International License

29929