Research Article
BibTex RIS Cite

Comparison of machine learning classification algorithms for purchasing forecast

Year 2021, , 59 - 68, 11.01.2021
https://doi.org/10.15637/jlecon.8.1.06

Abstract

With the development of computer technologies and invention of internet, many concepts have entered our lives. With the starting of wide usage of globalized internet network, concept of machine learning has emerged in time for smarter management of data flow in big dimensions. In line with technological developments, all activities began to be carried to digital environment and as a result of this, concept of e-commerce has entered our lives. E-commerce is one of the areas where machine learning is used most widely. By examining product purchasing situations in accordance with data available at the enterprises, various researches have been made for selection of most appropriate model in order to predict future data. In the study it was mentioned about concepts of e-commerce and machine learning and by applying Logistic Regression, Naïve Bayes and Support Vector Machines being machine learning classification algorithms, it has been aimed to determine the model having best accuracy ratio.

References

  • ALAN, A. & KARABATAK, M. (2020). Veri Seti - Sınıflandırma İlişkisinde Performansa Etki Eden Faktörlerin Değerlendirilmesi. Fırat Üniversitesi Müh. Bil. Dergisi. 32(2), 531-540.
  • ALPAYDIN, E. (2010). Introduction to Machine Learning, United States of America. Massachusetts Institute of Technology. Second Edition, ISBN-13: 978-0-262-01243-0.
  • ALPAYDIN, E. (2016). Machine learning: The New AI, United States of America. Massachusetts Institute of Technology. Fist Edition, ISBN-13: 978-0262529518.
  • AYDIN, C. (2018). Makine Öğrenmesi Algoritmaları Kullanılarak İtfaiye İstasyonu İhtiyacının Sınıflandırılması. European Journal of Science and Technology. 14, 169-175.
  • BAGUI, S., FANG, X., KALAIMANNAN, E., BAGUI, S.C. & SHEEHAN, J., (2017). Comparison of Machine-Learning Algorithms for Classification of VPN Network Traffic Flow Using Time-Related Features. Journal of Cyber Security Technology, https://doi.org/10.1080/23742917.2017.1321891, 1(2), 108-126.
  • BARTLETT, J. (2015). The Dark Net: Inside the Digital Underworld, United States of America. Melville House, ISBN: 978-1-61219-489-9.
  • BOZKIR, A.S, SEZER, E. & GÖK, B. (2009). Öğrenci Seçme Sınavında (ÖSS) Öğrenci Başarımını Etkileyen Faktörlerin Veri Madenciliği Yöntemleriyle Tespiti. 5th International Advanced Technologies Symposium, 13-15 May, Karabük, 1-7.
  • COLEMAN, M.J. & GANONG, L.H. (2014). The Social History of the American Family: An Encyclopedia. United States of America: Sage Publications.
  • COLLEY, W., (2019), Comparison of Machine Learning Algorithms For Financial Evaluations. Thesis (MS), Kocaeli: Gebze Technical University.
  • CORNELIUS, P., KIRKMAN, G., SACHS, J. & SCWAB, K. (2002). Country Profiles. The Global Information Technology Report 2001-2002: Readiness for the Networked World, New York, Oxfod: Oxford University Press.
  • ÇELIK, B. (2015). An Exploratory Analysis of Online Shopping Behavior in Turkey. Thesis (MS), Bahçeşehir University, Istanbul.
  • ÇELİK, B. & ERTEMEL, A.V. (2016). An Exploratory Analysis of Online Shopping Behavior in Turkey. International Journal of Commerce and Finance, 2(1), 67-80.
  • GÜNAY, M. (2018). Makine Öğrenmesiyle Müşteri Kayıplarının Tahmini. Thesis (MS), Istanbul University, İstanbul.
  • HAN, J., KAMBER, M. & PEI, J. (2012). Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers.
  • KANTARCI, Ö., ÖZALP, M., SEZGİNSOY, C., ÖZAŞKINLI, O. & CAVLA, C. (2017). Dijitalleşen Dünyada Ekonominin İtici Gücü: E-Ticaret, TÜSİAD Publication, ISBN: 978-605-165-022-7, April, 04-587.
  • KAPLANCAN, G.V. (2017). Türkiye’de ve Dünya’da E-Ticaret, Sanal İşletme ve Sanal Mağazacılığın Gelişimi ve Karşılaşılan Sorunlar Üzerine Bir Vaka İncelemesi. Thesis (MS), Nisantasi University, Istanbul.
  • KAVZOGLU, T. & COLKESEN, I. (2009). A Kernel Functions Analysis for Support Vector Machines for Land Cover Classification, International Journal of Applied Earth Observation and Geoinformation, 11, 352-359.
  • KAYNAR, O., TUNA M.F., GÖRMEZ Y. & DEVECI, M.A. (2017). Makine Öğrenmesi Yöntemleriyle Müşteri Kaybi Analizi. C.Ü. İktisadi ve İdari Bilimler Dergisi, 18(1).
  • KÜÇÜK, R.G. (2019). Makine Öğrenmesi Yöntemleri ile Parkinson Hastalığının Teşhis Edilmesi. Thesis (MS), Istanbul Aydın University, Istanbul.
  • MARKOFF, J. (2005). What the Dormouse Said: How the Sixties Counterculture Shaped the Personal Computer Industry. Penguin Books. ISBN:9780670033829.
  • MERTLER, C. A. & VANNATTA, R. A. (2005). Advanced and Multivariate Statistical Methods: Practical Application and Interpretation. CA: Pyrczak, Glendale.
  • MOHRI, M., ROSTAMIZADEH, A. & TALWALKAR, A. (2012). Foundations of Machine Learning. UK, London: The MIT Press Cambridge.
  • ÖZER, H. (2004). Nitel Değişkenli Ekonometrik Modeller. Ankara: Nobel Yayın Dağıtım.
  • PEDERSEN, P. (1995). World’s Largest Bookseller Opens on the Web, Amazon, https://press.aboutamazon.com/news-releases/news-release-details/worlds-largest-bookseller-opens-web/ [Accessed Date: 22/01/2021]
  • REPUBLIC OF TURKEY MINISTRY OF DEVELOPMENT. (2013). Internet and E-Commerce Entrepreneurship Axis Current Situation Report. Information Society Strategy Project Renewal of April 10.
  • SARISAKAL, M., NUSRET & AYDIN M. ALI. (2003). New Face of E-Commerce Mobile Commerce. Aviation and Space Technologies Magazine, 1(2), 83-90.
  • STATISTA, COPPOLA D. (NOV 27, 2020). Number of digital buyers worldwide from 2014 to 2021 https://www.statista.com/statistics/251666/number-of-digital-buyers-worldwide/ C2C E-Commerce, https://www.statista.com/markets/413/topic/983/c2c-e-commerce/
  • TANTUĞ, A. C., & TÜRKMENOĞLU, C. (2015). Türkçe Metinlerde Duygu Analizi, Thesis (MS), Istanbul Technical University, Istanbul.
  • TÜİK, DOĞAN A. (AGUST 25 2020). Hanehalkı Bilişim Teknolojileri (BT) Kullanım Araştırması, https://data.tuik.gov.tr/Bulten/Index?p=Hanehalki-Bilisim-Teknolojileri-(BT)-Kullanim-Arastirmasi-2020-33679
  • VAPNIK, V.N. (2000). The Nature of Statistical Learning Theory. Second Edition, USA, New York: Springer-Verlag, ISBN:0387987800.
  • VAPNIK, V.N. (1995). The Nature of Statistical Learning Theory. USA, New York: Springer-Verlag, ISBN:9780387945590.

Comparison of machine learning classification algorithms for purchasing forecast

Year 2021, , 59 - 68, 11.01.2021
https://doi.org/10.15637/jlecon.8.1.06

Abstract

With the development of computer technologies and invention of internet, many concepts have entered our lives. With the starting of wide usage of globalized internet network, concept of machine learning has emerged in time for smarter management of data flow in big dimensions. In line with technological developments, all activities began to be carried to digital environment and as a result of this, concept of e-commerce has entered our lives. E-commerce is one of the areas where machine learning is used most widely. By examining product purchasing situations in accordance with data available at the enterprises, various researches have been made for selection of most appropriate model in order to predict future data. In the study it was mentioned about concepts of e-commerce and machine learning and by applying Logistic Regression, Naïve Bayes and Support Vector Machines being machine learning classification algorithms, it has been aimed to determine the model having best accuracy ratio.

References

  • ALAN, A. & KARABATAK, M. (2020). Veri Seti - Sınıflandırma İlişkisinde Performansa Etki Eden Faktörlerin Değerlendirilmesi. Fırat Üniversitesi Müh. Bil. Dergisi. 32(2), 531-540.
  • ALPAYDIN, E. (2010). Introduction to Machine Learning, United States of America. Massachusetts Institute of Technology. Second Edition, ISBN-13: 978-0-262-01243-0.
  • ALPAYDIN, E. (2016). Machine learning: The New AI, United States of America. Massachusetts Institute of Technology. Fist Edition, ISBN-13: 978-0262529518.
  • AYDIN, C. (2018). Makine Öğrenmesi Algoritmaları Kullanılarak İtfaiye İstasyonu İhtiyacının Sınıflandırılması. European Journal of Science and Technology. 14, 169-175.
  • BAGUI, S., FANG, X., KALAIMANNAN, E., BAGUI, S.C. & SHEEHAN, J., (2017). Comparison of Machine-Learning Algorithms for Classification of VPN Network Traffic Flow Using Time-Related Features. Journal of Cyber Security Technology, https://doi.org/10.1080/23742917.2017.1321891, 1(2), 108-126.
  • BARTLETT, J. (2015). The Dark Net: Inside the Digital Underworld, United States of America. Melville House, ISBN: 978-1-61219-489-9.
  • BOZKIR, A.S, SEZER, E. & GÖK, B. (2009). Öğrenci Seçme Sınavında (ÖSS) Öğrenci Başarımını Etkileyen Faktörlerin Veri Madenciliği Yöntemleriyle Tespiti. 5th International Advanced Technologies Symposium, 13-15 May, Karabük, 1-7.
  • COLEMAN, M.J. & GANONG, L.H. (2014). The Social History of the American Family: An Encyclopedia. United States of America: Sage Publications.
  • COLLEY, W., (2019), Comparison of Machine Learning Algorithms For Financial Evaluations. Thesis (MS), Kocaeli: Gebze Technical University.
  • CORNELIUS, P., KIRKMAN, G., SACHS, J. & SCWAB, K. (2002). Country Profiles. The Global Information Technology Report 2001-2002: Readiness for the Networked World, New York, Oxfod: Oxford University Press.
  • ÇELIK, B. (2015). An Exploratory Analysis of Online Shopping Behavior in Turkey. Thesis (MS), Bahçeşehir University, Istanbul.
  • ÇELİK, B. & ERTEMEL, A.V. (2016). An Exploratory Analysis of Online Shopping Behavior in Turkey. International Journal of Commerce and Finance, 2(1), 67-80.
  • GÜNAY, M. (2018). Makine Öğrenmesiyle Müşteri Kayıplarının Tahmini. Thesis (MS), Istanbul University, İstanbul.
  • HAN, J., KAMBER, M. & PEI, J. (2012). Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers.
  • KANTARCI, Ö., ÖZALP, M., SEZGİNSOY, C., ÖZAŞKINLI, O. & CAVLA, C. (2017). Dijitalleşen Dünyada Ekonominin İtici Gücü: E-Ticaret, TÜSİAD Publication, ISBN: 978-605-165-022-7, April, 04-587.
  • KAPLANCAN, G.V. (2017). Türkiye’de ve Dünya’da E-Ticaret, Sanal İşletme ve Sanal Mağazacılığın Gelişimi ve Karşılaşılan Sorunlar Üzerine Bir Vaka İncelemesi. Thesis (MS), Nisantasi University, Istanbul.
  • KAVZOGLU, T. & COLKESEN, I. (2009). A Kernel Functions Analysis for Support Vector Machines for Land Cover Classification, International Journal of Applied Earth Observation and Geoinformation, 11, 352-359.
  • KAYNAR, O., TUNA M.F., GÖRMEZ Y. & DEVECI, M.A. (2017). Makine Öğrenmesi Yöntemleriyle Müşteri Kaybi Analizi. C.Ü. İktisadi ve İdari Bilimler Dergisi, 18(1).
  • KÜÇÜK, R.G. (2019). Makine Öğrenmesi Yöntemleri ile Parkinson Hastalığının Teşhis Edilmesi. Thesis (MS), Istanbul Aydın University, Istanbul.
  • MARKOFF, J. (2005). What the Dormouse Said: How the Sixties Counterculture Shaped the Personal Computer Industry. Penguin Books. ISBN:9780670033829.
  • MERTLER, C. A. & VANNATTA, R. A. (2005). Advanced and Multivariate Statistical Methods: Practical Application and Interpretation. CA: Pyrczak, Glendale.
  • MOHRI, M., ROSTAMIZADEH, A. & TALWALKAR, A. (2012). Foundations of Machine Learning. UK, London: The MIT Press Cambridge.
  • ÖZER, H. (2004). Nitel Değişkenli Ekonometrik Modeller. Ankara: Nobel Yayın Dağıtım.
  • PEDERSEN, P. (1995). World’s Largest Bookseller Opens on the Web, Amazon, https://press.aboutamazon.com/news-releases/news-release-details/worlds-largest-bookseller-opens-web/ [Accessed Date: 22/01/2021]
  • REPUBLIC OF TURKEY MINISTRY OF DEVELOPMENT. (2013). Internet and E-Commerce Entrepreneurship Axis Current Situation Report. Information Society Strategy Project Renewal of April 10.
  • SARISAKAL, M., NUSRET & AYDIN M. ALI. (2003). New Face of E-Commerce Mobile Commerce. Aviation and Space Technologies Magazine, 1(2), 83-90.
  • STATISTA, COPPOLA D. (NOV 27, 2020). Number of digital buyers worldwide from 2014 to 2021 https://www.statista.com/statistics/251666/number-of-digital-buyers-worldwide/ C2C E-Commerce, https://www.statista.com/markets/413/topic/983/c2c-e-commerce/
  • TANTUĞ, A. C., & TÜRKMENOĞLU, C. (2015). Türkçe Metinlerde Duygu Analizi, Thesis (MS), Istanbul Technical University, Istanbul.
  • TÜİK, DOĞAN A. (AGUST 25 2020). Hanehalkı Bilişim Teknolojileri (BT) Kullanım Araştırması, https://data.tuik.gov.tr/Bulten/Index?p=Hanehalki-Bilisim-Teknolojileri-(BT)-Kullanim-Arastirmasi-2020-33679
  • VAPNIK, V.N. (2000). The Nature of Statistical Learning Theory. Second Edition, USA, New York: Springer-Verlag, ISBN:0387987800.
  • VAPNIK, V.N. (1995). The Nature of Statistical Learning Theory. USA, New York: Springer-Verlag, ISBN:9780387945590.
There are 31 citations in total.

Details

Primary Language English
Subjects Finance, Business Administration
Journal Section Articles
Authors

Rabia Özdemir This is me 0000-0002-2774-6799

Münevver Turanlı 0000-0002-9535-4527

Publication Date January 11, 2021
Published in Issue Year 2021

Cite

APA Özdemir, R., & Turanlı, M. (2021). Comparison of machine learning classification algorithms for purchasing forecast. Journal of Life Economics, 8(1), 59-68. https://doi.org/10.15637/jlecon.8.1.06