Research Article
BibTex RIS Cite

İzmir Körfezi Alt Havzasında Sürdürülebilir Su Yönetimi: WEAP Modeli ile Su Kaynaklarının Değerlendirilmesi

Year 2025, Volume: 49 Issue: 3, 95 - 110, 06.12.2025
https://doi.org/10.24232/jmd.1658661

Abstract

Su, hem doğal ekosistemlerin hem de kentsel yaşamın sürdürülebilirliği için hayati bir rol oynamaktadır. Ancak, artan baskılar nedeniyle bu önemli kaynağın sürdürülebilirliği giderek daha fazla risk altına girmektedir. Türkiye'nin yarı kurak batı bölgesinde yer alan İzmir Körfezi alt havzası, ekonomik, ekolojik ve sosyal açıdan büyük bir öneme sahiptir. Ancak, hızlı kentleşme, nüfus artışı ve iklim değişikliğinin etkileri nedeniyle su kaynakları ciddi tehditlerle karşı karşıyadır ve bu kırılganlığın gelecekte artması beklenmektedir. Bu çalışma, İzmir Körfezi alt havzasında su potansiyelini değerlendirmek, kentsel ve tarımsal su taleplerini analiz etmek ve sürdürülebilir yönetim stratejileri geliştirmek amacıyla Su Değerlendirme ve Planlama (WEAP) modelini kullanmaktadır. Araştırma, alt havzada yer alan ve eski İzmir metropol alanına dâhil olan on bir ilçeye (Balçova, Bayraklı, Bornova, Buca, Çiğli, Gaziemir, Güzelbahçe, Karabağlar, Konak, Karşıyaka ve Narlıdere) su sağlayan mevcut kaynakları incelemektedir. Ayrıca, bölge için 2050 yılına kadar su talebini anlamak adına nüfus projeksiyonları oluşturulmuştur. Çalışmada, RCP4.5 iklim senaryosu kapsamında MPI-ESM-MR ve HadGEM2-ES küresel iklim modelleri kullanılarak olumlu ve olumsuz senaryolar geliştirilmiştir. Referans, İyimser ve Kötümser olmak üzere üç senaryo, WEAP modeli ile analiz edilmiştir. Sonuçlar, su talebinin 2050 yılına kadar referans senaryoda 318.25 hm³'e, kötümser senaryoda ise 381.59 hm³'e ulaşacağını göstermektedir. Olumsuz koşullarda, karşılanamayan su talebinin 160.9 hm³'e çıkabileceği öngörülmektedir. Bu durum, acil önlem alınması gerektiğini vurgulamaktadır. İyimser senaryo, proaktif politikaların ve iklim direncini artıran önlemlerin su kıtlığını önleyebileceğini ve su dengesi sağlayabileceğini göstermektedir. Stratejik müdahaleler olmadan, İzmir Körfezi’nin su güvenliği tehdit altında kalmaya devam edecektir. Artan talep ve iklim değişikliği baskıları karşısında, uzun vadeli su sürdürülebilirliği için ileriye dönük politikalar ve etkin su yönetimi büyük önem taşımaktadır.

References

  • Acatay, T. (1996). Sulama Mühendisliği. Dokuz Eylül Üniversitesi Vakfı Yayınevi, İzmir.
  • Blaney, H.F. & Criddle, W.P. (1950). Determining Water Requirements in Irrigated Areas from Climatological and Irrigation Data. United States Department of Agriculture, Soil Conservation Service.
  • Blanco-Gutiérrez, I., Varela-Ortega, C. & Purkey, D.R. (2011) Integrated economic-hydrologic analysis of policy responses to promote sustainable water use under changing climatic conditions. International Congress European Association of Agricultural Economics.
  • Comair, G.F., McKinney, D.C. & Siegel, D. (2012) Hydrology of the Jordan River Basin: Watershed Delineation, Precipitation and Evapotranspiration. Water Resources Management, Vol. 26, 4281-4293. doi: 10.1007/s11269-012-0144-8
  • General Directorate of İzmir Water and Sewerage Administration (IZSU). (2023). Annual Report of 2023.
  • Hamlat, A., Errih, M. & Guidoum, A. (2013) Simulation of water resources management scenarios in western Algeria watersheds using WEAP model. Arabian Journal of Geosciences, 2225–2236. doi: 10.1007/s12517-012-0539-0
  • Hussain, S. (2023). Water Resource Planning and Management Using WEAP and SWAT Models- A Review. International Journal of Research in Engineering and Science, Vol.11, 173-182.
  • IZSU, (2024, 15, December). General Directorate of İzmir Water and Sewerage Administration, https://www.izsu.gov.tr/
  • Karahan, M., & Elçi, Ş. (2023). Assessment of future water demand in a semiarid region of Turkey: A case study of Tahtalı-Seferihisar Basin. Sustainable Water Resources Management, 9:44 https://doi.org/10.1007/s40899-023-00817-2
  • Koç, A.C. & Güner, Ü. (2005). Reassesment of Existing Irrigation Projects with Fao Criteria: Tavas Plain Example. Journal of Dumlupinar University Graduate School of Natural and Applied Sciences. Vol. 9, 93-106.
  • Lévite, H., Sally, H. & Cour, J. (2003) Testing water demand management scenarios in a water-stressed basin in South Africa: application of the WEAP model. Physics and Chemistry of the Earth, 28:779–786. doi:10.1016/j.pce.2003.08.025
  • MFWA (2016a). Republic of Turkey Ministry of Forestry and Water Affairs Report. (Küçük Menderes Havzası Master Plan Raporu Hazırlanması İşi Master Plan Nihai Raporu. Ankara: SUİŞ Proje.)
  • MFWA (2016b). Republic of Turkey Ministry of Forestry and Water Affairs Report. (İklim Değişikliğinin Su Kaynaklarına Etkisi Projesi Nihai Raporu, Ek – 8, Küçük Menderes Havzası.)
  • Mounir, M.Z., Ma, C.M., & Issoufou, A. (2011) Application of Water Evaluation and Planning (WEAP): A Model to Assess Future Water Demands in the Niger River (In Niger Republic). Modern Applied Science, 5(1): 38– 49.
  • Mourad, K.A. & Alshihabi, O. (2016) Assessment of future Syrian water resources supply and demand by the WEAP model. Hydrological Sciences Journal. Vol. 61, No. 2, 393–401. http://dx.doi.org/10.1080/02626667.2014.999779
  • Negahban-Azar, M. & Mosleh, L. (2021) Role of Models in the Decision-Making Process in Integrated Urban Water Management: A Review. Water, 13, 1252. https://doi.org/10.3390/w13091252
  • Republic of Turkey İzmir Governorship, (2025, 06, January). http://www.İzmir.gov.tr/
  • Serbeş, Z. A., Okkan, U. & Aşık, Ş. (2018). Estimation of net irrigation water demand under possible climate change scenarios: A case study of Menemen Left Bank. Süleyman Demirel University Journal of Agriculture Faculty, Special Issue of the 1st International Congress on Agricultural Structures and Irrigation, 91–101.
  • Stockholm Environment Institute (SEI). (2015). Water Evaluation and Planning System (WEAP): User Guide.
  • TurkStat, (2024, 15, November). Turkish Statistical Institute, https://www.tuik.gov.tr/
  • UN (2019). United Nations, 2018 Revision of World Urbanization Prospects.
  • Yates, D., Sieber, J., Purkey, D.R., & Huber-Lee, A. (2005) WEAP21—a demand, priority, and preference driven water planning model. Part 1: model characteristics. Water International, 30:487–500.
  • Yılmaz B, Harmancıoğlu N. (2010) An indicator based assessment for water resources management in Gediz River Basin, Turkey. Water Resources Management, 24:4359–4379.

Sustainable Water Management in the İzmir Bay Sub-Basin: An Evaluation of Water Resources with the WEAP Model

Year 2025, Volume: 49 Issue: 3, 95 - 110, 06.12.2025
https://doi.org/10.24232/jmd.1658661

Abstract

Water is essential for life. It plays a critical role in sustaining both natural ecosystems and urban environments. However, the sustainability of this vital resource is increasingly at risk due to growing pressures. The İzmir Bay sub-basin, located in the semiarid western region of Turkey, holds significant economic, ecological, and social importance. However, the region's water resources are facing significant challenges due to rapid urbanization, population growth, and the impacts of climate change, with vulnerability expected to increase in the future. This study employs the Water Evaluation and Planning (WEAP) model to evaluate water potential, address domestic and agricultural water demands, and explore management strategies for sustainability of the region. The research first examines available water resources that supply water to eleven districts in the former metropolitan area of İzmir province (Balçova, Bayraklı, Bornova, Buca, Çiğli, Gaziemir, Güzelbahçe, Karabağlar, Konak, Karşıyaka, and Narlıdere) within the sub-basin. Population projections for the region up to 2050 were also estimated to understand water demand. Additionally, favorable and unfavorable scenarios were developed based on projected changes in temperature, precipitation, and flow rates under the RCP4.5 scenario. These projections utilized MPI-ESM-MR and HadGEM2-ES, both of which are state-of-the-art global climate models. Three scenarios —reference, optimistic, and pessimistic— representing varying climatic and hydrological conditions were analyzed using the WEAP model. Findings indicate a sharp rise in water demand, reaching 318.25 hm³ by 2050 in the reference scenario, while the pessimistic scenario forecasts the highest demand at 381.59 hm³. Unmet demand could rise dramatically under pessimistic conditions, reaching 160.9 hm³ by 2050. This emphasizes the urgent need for mitigation strategies. The optimistic scenario demonstrates that proactive policies and climate resilience measures can prevent shortages and provide water balance. Without strategic interventions, İzmir Bay’s water security will remain at risk. Forward-looking policies and effective management are essential to ensure equitable and sustainable water distribution in the face of growing demand and climate change pressures.

References

  • Acatay, T. (1996). Sulama Mühendisliği. Dokuz Eylül Üniversitesi Vakfı Yayınevi, İzmir.
  • Blaney, H.F. & Criddle, W.P. (1950). Determining Water Requirements in Irrigated Areas from Climatological and Irrigation Data. United States Department of Agriculture, Soil Conservation Service.
  • Blanco-Gutiérrez, I., Varela-Ortega, C. & Purkey, D.R. (2011) Integrated economic-hydrologic analysis of policy responses to promote sustainable water use under changing climatic conditions. International Congress European Association of Agricultural Economics.
  • Comair, G.F., McKinney, D.C. & Siegel, D. (2012) Hydrology of the Jordan River Basin: Watershed Delineation, Precipitation and Evapotranspiration. Water Resources Management, Vol. 26, 4281-4293. doi: 10.1007/s11269-012-0144-8
  • General Directorate of İzmir Water and Sewerage Administration (IZSU). (2023). Annual Report of 2023.
  • Hamlat, A., Errih, M. & Guidoum, A. (2013) Simulation of water resources management scenarios in western Algeria watersheds using WEAP model. Arabian Journal of Geosciences, 2225–2236. doi: 10.1007/s12517-012-0539-0
  • Hussain, S. (2023). Water Resource Planning and Management Using WEAP and SWAT Models- A Review. International Journal of Research in Engineering and Science, Vol.11, 173-182.
  • IZSU, (2024, 15, December). General Directorate of İzmir Water and Sewerage Administration, https://www.izsu.gov.tr/
  • Karahan, M., & Elçi, Ş. (2023). Assessment of future water demand in a semiarid region of Turkey: A case study of Tahtalı-Seferihisar Basin. Sustainable Water Resources Management, 9:44 https://doi.org/10.1007/s40899-023-00817-2
  • Koç, A.C. & Güner, Ü. (2005). Reassesment of Existing Irrigation Projects with Fao Criteria: Tavas Plain Example. Journal of Dumlupinar University Graduate School of Natural and Applied Sciences. Vol. 9, 93-106.
  • Lévite, H., Sally, H. & Cour, J. (2003) Testing water demand management scenarios in a water-stressed basin in South Africa: application of the WEAP model. Physics and Chemistry of the Earth, 28:779–786. doi:10.1016/j.pce.2003.08.025
  • MFWA (2016a). Republic of Turkey Ministry of Forestry and Water Affairs Report. (Küçük Menderes Havzası Master Plan Raporu Hazırlanması İşi Master Plan Nihai Raporu. Ankara: SUİŞ Proje.)
  • MFWA (2016b). Republic of Turkey Ministry of Forestry and Water Affairs Report. (İklim Değişikliğinin Su Kaynaklarına Etkisi Projesi Nihai Raporu, Ek – 8, Küçük Menderes Havzası.)
  • Mounir, M.Z., Ma, C.M., & Issoufou, A. (2011) Application of Water Evaluation and Planning (WEAP): A Model to Assess Future Water Demands in the Niger River (In Niger Republic). Modern Applied Science, 5(1): 38– 49.
  • Mourad, K.A. & Alshihabi, O. (2016) Assessment of future Syrian water resources supply and demand by the WEAP model. Hydrological Sciences Journal. Vol. 61, No. 2, 393–401. http://dx.doi.org/10.1080/02626667.2014.999779
  • Negahban-Azar, M. & Mosleh, L. (2021) Role of Models in the Decision-Making Process in Integrated Urban Water Management: A Review. Water, 13, 1252. https://doi.org/10.3390/w13091252
  • Republic of Turkey İzmir Governorship, (2025, 06, January). http://www.İzmir.gov.tr/
  • Serbeş, Z. A., Okkan, U. & Aşık, Ş. (2018). Estimation of net irrigation water demand under possible climate change scenarios: A case study of Menemen Left Bank. Süleyman Demirel University Journal of Agriculture Faculty, Special Issue of the 1st International Congress on Agricultural Structures and Irrigation, 91–101.
  • Stockholm Environment Institute (SEI). (2015). Water Evaluation and Planning System (WEAP): User Guide.
  • TurkStat, (2024, 15, November). Turkish Statistical Institute, https://www.tuik.gov.tr/
  • UN (2019). United Nations, 2018 Revision of World Urbanization Prospects.
  • Yates, D., Sieber, J., Purkey, D.R., & Huber-Lee, A. (2005) WEAP21—a demand, priority, and preference driven water planning model. Part 1: model characteristics. Water International, 30:487–500.
  • Yılmaz B, Harmancıoğlu N. (2010) An indicator based assessment for water resources management in Gediz River Basin, Turkey. Water Resources Management, 24:4359–4379.
There are 23 citations in total.

Details

Primary Language English
Subjects Hydrogeology
Journal Section Research Article
Authors

Hazal Durmuş 0009-0001-1374-9120

Şebnem Elçi 0000-0002-9306-1042

Early Pub Date December 6, 2025
Publication Date December 6, 2025
Submission Date March 15, 2025
Acceptance Date May 16, 2025
Published in Issue Year 2025 Volume: 49 Issue: 3

Cite

APA Durmuş, H., & Elçi, Ş. (2025). Sustainable Water Management in the İzmir Bay Sub-Basin: An Evaluation of Water Resources with the WEAP Model. Jeoloji Mühendisliği Dergisi, 49(3), 95-110. https://doi.org/10.24232/jmd.1658661