Research Article
BibTex RIS Cite

Determination of Geotechnical Properties and Assessment of Post-Liquefaction Ground Settlement in Geothermal Facilities

Year 2025, Volume: 49 Issue: 1, 47 - 62, 11.06.2025
https://doi.org/10.24232/jmd.1594008

Abstract

Turkey has economic potential from its geothermal resources, although they are more limited compared to conventional energy resources. The most productive geothermal wells are typically located within Tertiary and older volcanic formations characterized by permeable fracture geology. In regions with geothermal potential, energy facilities are often situated on agricultural land with high groundwater tables. One of the primary risks in exploring and operating geothermal resources in these areas is the seismic hazard level. Following the earthquakes in Kahramanmaraş on February 6, 2023, earthquake risk awareness has significantly increased throughout the country. In this context, the present study aims to evaluate the seismic performance of geothermal power plant sites, particularly those with high groundwater levels. At a geothermal power plant site located in the Aegean region, the geological conditions, tectonic features, and seismic hazard level were assessed for a potential earthquake scenario. Based on these evaluations, soil liquefaction analyses were performed. In geothermal fields, especially those with highly permeable alluvial soils, groundwater levels can rise considerably due to seasonal variations and seismic activity. In operating geothermal facilities, potential ground settlement resulting from liquefaction was calculated using empirical methods to define necessary mitigation measures. Additionally, the effects of varying groundwater depths on structural performance were investigated. This study emphasizes the importance of evaluating the continuous operational performance of geothermal sites after an earthquake, based on geological characteristics, groundwater conditions, and seismic risk levels.

References

  • Axelsson, G. (2010). Sustainable geothermal utilization – case histories; definitions; research issues and modelling. Geothermics 39, 283–291.doi.org/10.1016/j.geothermics.2010.08.001
  • Barka, A., & Reilinger, R. (1997). Active tectonics of the Eastern Mediterranean region: Deduced from GPS, neotectonic and seismicity data. Annali di Geofisica, 40(3). doi.org/10.4401/ag-3892Bayless, J., ve Somerville, P., (2013). Bayless-Somerville Directivity Model, Chapter3 of PEER Report No. 2013/09, P. Spudich(Editor), Pacific Earthquake Engineering Research Center, Berkeley, CA. doi.org/10.4401/ag-3892
  • Boulanger R., Idriss I. (2014). CPT and SPT based liquefaction triggering procedures. Report UCD/CGM- 14/01. doi.org/10.1061/(ASCE)GT.1943-5606.0001388
  • Bozkurt, E. (2001). Neotectonics of Turkey-a synthesis. Geodynamica Acta 14, 3-30. doi.org/10.1080/09853111.2001.11432432
  • Bray D, Macedo J. (2017). 6th Ishihara lecture: Simplified procedure for estimating liquefaction induced building settlement. Soil Dynamics and Earthquake Engineering (102) 215-231. doi.org/10.1016/j.soildyn.2017.08.026
  • Cliq v.3.5. Software (2018). Liquefaction Assessment Software from CPTU Measurement Geologismiki, Greece. Erişim adresi:www.geologismiki.gr
  • Çağatay, A, ve Arda, Ö. (1980). Altın içerikli Manisa Salihli Şart konglomeralarının ağır mineralleri: Jeoloji Müh. Bülteni, 10, 49-65. Erişim adresi: https://dergipark.org.tr/tr/pub/jmd/issue/28159/297653#article_cite
  • Çiftçi, N.B., and Bozkurt, E.(2008). Pattern of normal faulting in the Gediz Graben, SW Turkey. Tectonophysics, Sedimentary Geology, 473(1-2): 234-260. doi.org/10.1016/j.tecto.2008.05.036
  • Demirtaş, R., Özdemir, A., Arabacı, F., Şahin, B. (2013). Salihli-Bozdağ (Manisa, İzmir),3305436-3305437-3305469 No‟lu Jeotermal Ruhsat Alanları Jeolojik Etüt Raporu. Erişim adresi: https://www.researchgate.net/ publication/331811569
  • Dewey, J. F., & Şengör, A. M. C. (1979). Aegean and surrounding regions: Complex multiplate and continuum tectonics in a convergent zone. Bulletin of the Geological Society of America, 90(1). doi.org/10.1130/0016-7606(1979)90<84:AASRCM>2.0.CO;2
  • Emre, T. (1996). Gediz grabenin jeolojisi ve tektoniği.Turkish Journal of Earth Sciences. 5, 171-186.doi.org/10.55730/1300-0985.1737
  • Goldstein, B. (2018). IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation Ch. 4. A. MIT Press. Erişim adresi:www.ipcc.ch
  • Hakyemez H.Y, Göktaş F., Erkal T. (2013). Gediz Grabeninin Kuvaterner Jeolojisi ve Evrimi.Türkiye Jeoloji Bülteni 56-2, 1-26. Erişim adresi: https://dergipark.org.tr/tr/pub/tjb/issue/28126/298799
  • Huttrer, G.W. (2020). Geothermal Power Generation in the World 2015-2020 Update Report. Proceedings of the World Geothermal Congress. Erişim adresi:geothermie-schweiz.ch
  • Ishihara K, Yoshimine M. (1992). Evaluation of settlements in sand deposits following liquefaction during earthquakes”. Soils and Foundations, 32(1), 173-188. doi.org/10.3208/sandf1972.32.173
  • Jefferies, M.G., and Davies, M.P. (1993). Use of CPTU to estimate equivalent SPT N60. Geotechnical Testing Journal, ASTM, 16(4): 458-468. doi.org/10.1520/GTJ10286J
  • Jolie, E., Faulds J., Scott S., Chambefort I. AxelssonG., Carlos L., Negrin G., Regenspurg S., Ziegler M., Ayling B., Richer A. and Zemedkun M.T. (2021). Geological controls on geothermal resources for power generation. Nature Reviews Earth & Environment 2 324-339. doi.org/10.1038/s43017-021-00154-y
  • Kadirioğlu, F. Tuba, Kartal, R. F., Kılıç, T., Kalafat,D., Duman, T. Y., Eroğlu Azak, T., Özalp, S.,ve Emre, Ö. (2018). An improved earthquake catalogue (M ≥ 4.0) for Turkey and its near vicinity (1900–2012). Bulletin of Earthquake Engineering, 16(8), 3317–3338. doi.org/10.1007/s10518-016-0064-8.
  • Le Pichon, X., Chamot-Rooke, C., Lallemant, S., Noomen, R., Veis, G. (1995). Geodetic determination of the kinematics of Central Greece with respect to Europe: implications for Eastern Mediterranean tectonics. Journal of Geophysical Research 100, 12675–12690. doi.org/10.1029/95JB00317
  • Mueller, S., Kahle, H.-G., Barka, A. (1997). Plate-tectonic situation in the Anatolian–Aegean region. In: Schinder, Pfister (Eds.), Active Tectonics of NW Anatolia—The Marmara-Poly Project. VdF Hochschulverlag, Zürich, pp.13–28. Erişim adresi: https://engineering.purdue.edu
  • Oral, M.B., Reilinger, R.E., Toksöz, M.N., Kong, R.W., Barka, A.A., Kınık, I., Lenk, O. (1995). Global positioning system offers evidence of plate motions in eastern Mediterranean. EOS Transactions 76 (9). doi.org/10.1029/eo076i002p00009-01
  • Özkaymak, Ç., Sözbilir, H. ve Uzel B.(2013).Neogene Quaternary evolution of the Manisa Basin: Evidence for variation in the stress pattern of the İzmir-Balıkesir Transfer Zone, western Anatolia. Journal of Geodynamics Special issue: Tethyan Evolution, Anatolia, 65, 117-135. doi.org/10.1016/j.jog.2012.06.004
  • Ring, U., Laws, S., & Bernet, M. (1999). Structural analysis of a complex nappe sequence and late-orogenic basins from the Aegean Island of Samos, Greece. Journal of Structural Geology,21(11).doi.org/10.1016/S0191-8141(99)00108
  • Robertson. P.K., Campanella, R.G., Gillespie, D., and Greig, J. (1986). Use of Piezometer Cone data. In-Situ’86 Use of In-situ testing in Geotechnical Engineering, GSP 6, ASCE, Reston, VA, Specialty Publication, SM 92, pp 1263-1280. Erişim Adresi: www.researchgate.net/publication/285689813_Use_of_Piezometer_Cone_Data
  • Robertson, P.K. (1990). Soil classification using the cone penetration test. Canadian Geotechnical Journal, 27(1): 151-158. doi.org/10.1139/t90-014
  • Robertson, P.K. and Wride, C.E. (1998) Evaluating Cyclic Liquefaction Potential Using the Cone Penetration Test. Canadian Geotechnical Journal,35, 442-459. doi.org/10.1139/t98-017
  • Robertson, P.K. (2010). Soil Behaviour Type from the CPT: An Update. 2nd International Symposium on Cone Penetration Testing, Huntington Beach, Vol. 2, 575-583. Erişim Adresi:www.cpt-robertson.com
  • Sözbilir, H., Sümer, Ö., Uzel, B., Ersoy, Y., Erkül,F., Inci, ˙ U., Helvacı, C., Özkaymak, Ç.(2009). 17-20 Ekim 2005- Sığacık Körfezi(İzmir) ˙ depremlerinin sismik jeomorfolojisi ve bölgedeki gerilme alanları ile ilişkisi, Batı Anadolu. Türkiye Jeoloji Bülteni, 52, 217–238.Erişim adresi: https://dergipark.org.tr/tr/pub/tjb/issue/28366/301607
  • Şengör, A.M.C., Görür, N. and Saroğlu, F. (1985).“Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. In: Biddle, K., Christie-Blick, N. (Eds.), Strike-slip Faulting and Basin Formation”, Society of Economic Paleontologists and Mineralogists, Special Publication 37, Tulsa, OK. doi.org/10.2110/pec.85.37.0211
  • TBDY (2018). Türkiye Bina Deprem Yönetmeliği, İçişleri Bakanlığı, Afet ve Acil Durum Yönetimi Başkanlığı, Ankara. Erişim adres:https://tdth.afad.gov.tr
  • Yağmurlu, F. (1987). Salihli güneyinde üste doğru kabalaşan Neojen yaşlı alüvyonel yelpaze çökelleri ve Gediz Grabeni’nin tektonosedimanter gelişimi, Türkiye Jeoloji Bülteni, 30, 33-40.Erişim Adresi:www.jmo.org.tr
  • Yılmaz, H. (1986). Yeşilyurt (Alaşehir) sahasındaki uranyum belirtilerinin kökeni ve bunların depolanma sonrası aberasyonlarla tarihi: Türkiye Jeol, Kur. Bülteni. 294, 43-53.Erişim Adresi:www.jmo.org.tr
  • Youd, T.L., Idriss, I.M. (2001). Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. Journal of Geotechnical and Geoenvironmental Engineering, Vol. 127, No.4, April, 2001. doi.org/10.1061/(ASCE)1090-0241(2001)127:10(817)
  • Zhang, G., Robertson, P.K., and Brachman, R.W.I.(2002). Estimating Liquefaction-induced Ground Settlements from CPT for Level Ground. Can. Geotech J., 39, 1168–1180. doi.org/10.1139/t02-047

Jeotermal Tesisler için Jeoteknik Özelliklerinin Belirlenmesi ve Sıvılaşma Sonrası Zemin Oturmalarının Değerlendirilmesi

Year 2025, Volume: 49 Issue: 1, 47 - 62, 11.06.2025
https://doi.org/10.24232/jmd.1594008

Abstract

Türkiye, geleneksel enerji kaynaklarına kıyasla daha sınırlı olmakla birlikte jeotermal kaynaklardan da enerji elde edilen ekonomik bir potansiyele sahiptir. En üretken jeotermal kuyular, geçirgen kırık ağlarına sahip Tersiyer ve daha yaşlı volkanik formasyonlarda gözlenmektedir. Jeotermal enerji potansiyeli olduğu tespit edilen bölgelerde, enerji santralleri, yer yer su tablası yüksek tarım arazilerinde konumlanmış olup jeotermal kaynak değerlendirmesi ve işletmesindeki temel riskler arasında, tetiklenen sismisite riski yer alır. 6 Şubat 2023 tarihinde meydana gelen Kahramanmaraş merkezli depremler sonrası ülkemiz genelinde deprem riski farkındalığı artmış olup bu çalışma kapsamında yeraltı su seviyesi genellikle yüksek olan jeotermal santral sahalarının deprem durumundaki performansının değerlendirilmesine yönelik bir vaka çalışması yapılmıştır. Ege Bölgesi’nde bulunan bir jeotermal enerji santrali sahasında olası bir deprem durumunda jeofizik deney verileri, zemin araştırma çalışmaları ve sahanın deprem riskine göre yapılan hesaplamalarda zemin sıvılaşması tespit edilmiştir. Halen işletme durumunda olan tesiste sıvılaşmanın tespit edilmiş olması yeterli görülmemiş ve gerekli çözümlerin ortaya koyulabilmesine yönelik olarak sıvılaşma sonrası oluşması beklenen zemin oturmaları hesaplanmıştır. Değişken su tablası derinliğine göre elde edilen sıvılaşma sonrası zemin oturmalarının yapılara etkisi tahkik edilmiştir. Bu çalışma, jeotermal sahalardaki deprem sonrası kesintisiz kullanım performansının, jeolojik özellikler, yeraltı su seviyesi ve deprem risk seviyesine bağlı olarak hesaplanması gerektiğinin ortaya konması bakımından önemlidir.

References

  • Axelsson, G. (2010). Sustainable geothermal utilization – case histories; definitions; research issues and modelling. Geothermics 39, 283–291.doi.org/10.1016/j.geothermics.2010.08.001
  • Barka, A., & Reilinger, R. (1997). Active tectonics of the Eastern Mediterranean region: Deduced from GPS, neotectonic and seismicity data. Annali di Geofisica, 40(3). doi.org/10.4401/ag-3892Bayless, J., ve Somerville, P., (2013). Bayless-Somerville Directivity Model, Chapter3 of PEER Report No. 2013/09, P. Spudich(Editor), Pacific Earthquake Engineering Research Center, Berkeley, CA. doi.org/10.4401/ag-3892
  • Boulanger R., Idriss I. (2014). CPT and SPT based liquefaction triggering procedures. Report UCD/CGM- 14/01. doi.org/10.1061/(ASCE)GT.1943-5606.0001388
  • Bozkurt, E. (2001). Neotectonics of Turkey-a synthesis. Geodynamica Acta 14, 3-30. doi.org/10.1080/09853111.2001.11432432
  • Bray D, Macedo J. (2017). 6th Ishihara lecture: Simplified procedure for estimating liquefaction induced building settlement. Soil Dynamics and Earthquake Engineering (102) 215-231. doi.org/10.1016/j.soildyn.2017.08.026
  • Cliq v.3.5. Software (2018). Liquefaction Assessment Software from CPTU Measurement Geologismiki, Greece. Erişim adresi:www.geologismiki.gr
  • Çağatay, A, ve Arda, Ö. (1980). Altın içerikli Manisa Salihli Şart konglomeralarının ağır mineralleri: Jeoloji Müh. Bülteni, 10, 49-65. Erişim adresi: https://dergipark.org.tr/tr/pub/jmd/issue/28159/297653#article_cite
  • Çiftçi, N.B., and Bozkurt, E.(2008). Pattern of normal faulting in the Gediz Graben, SW Turkey. Tectonophysics, Sedimentary Geology, 473(1-2): 234-260. doi.org/10.1016/j.tecto.2008.05.036
  • Demirtaş, R., Özdemir, A., Arabacı, F., Şahin, B. (2013). Salihli-Bozdağ (Manisa, İzmir),3305436-3305437-3305469 No‟lu Jeotermal Ruhsat Alanları Jeolojik Etüt Raporu. Erişim adresi: https://www.researchgate.net/ publication/331811569
  • Dewey, J. F., & Şengör, A. M. C. (1979). Aegean and surrounding regions: Complex multiplate and continuum tectonics in a convergent zone. Bulletin of the Geological Society of America, 90(1). doi.org/10.1130/0016-7606(1979)90<84:AASRCM>2.0.CO;2
  • Emre, T. (1996). Gediz grabenin jeolojisi ve tektoniği.Turkish Journal of Earth Sciences. 5, 171-186.doi.org/10.55730/1300-0985.1737
  • Goldstein, B. (2018). IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation Ch. 4. A. MIT Press. Erişim adresi:www.ipcc.ch
  • Hakyemez H.Y, Göktaş F., Erkal T. (2013). Gediz Grabeninin Kuvaterner Jeolojisi ve Evrimi.Türkiye Jeoloji Bülteni 56-2, 1-26. Erişim adresi: https://dergipark.org.tr/tr/pub/tjb/issue/28126/298799
  • Huttrer, G.W. (2020). Geothermal Power Generation in the World 2015-2020 Update Report. Proceedings of the World Geothermal Congress. Erişim adresi:geothermie-schweiz.ch
  • Ishihara K, Yoshimine M. (1992). Evaluation of settlements in sand deposits following liquefaction during earthquakes”. Soils and Foundations, 32(1), 173-188. doi.org/10.3208/sandf1972.32.173
  • Jefferies, M.G., and Davies, M.P. (1993). Use of CPTU to estimate equivalent SPT N60. Geotechnical Testing Journal, ASTM, 16(4): 458-468. doi.org/10.1520/GTJ10286J
  • Jolie, E., Faulds J., Scott S., Chambefort I. AxelssonG., Carlos L., Negrin G., Regenspurg S., Ziegler M., Ayling B., Richer A. and Zemedkun M.T. (2021). Geological controls on geothermal resources for power generation. Nature Reviews Earth & Environment 2 324-339. doi.org/10.1038/s43017-021-00154-y
  • Kadirioğlu, F. Tuba, Kartal, R. F., Kılıç, T., Kalafat,D., Duman, T. Y., Eroğlu Azak, T., Özalp, S.,ve Emre, Ö. (2018). An improved earthquake catalogue (M ≥ 4.0) for Turkey and its near vicinity (1900–2012). Bulletin of Earthquake Engineering, 16(8), 3317–3338. doi.org/10.1007/s10518-016-0064-8.
  • Le Pichon, X., Chamot-Rooke, C., Lallemant, S., Noomen, R., Veis, G. (1995). Geodetic determination of the kinematics of Central Greece with respect to Europe: implications for Eastern Mediterranean tectonics. Journal of Geophysical Research 100, 12675–12690. doi.org/10.1029/95JB00317
  • Mueller, S., Kahle, H.-G., Barka, A. (1997). Plate-tectonic situation in the Anatolian–Aegean region. In: Schinder, Pfister (Eds.), Active Tectonics of NW Anatolia—The Marmara-Poly Project. VdF Hochschulverlag, Zürich, pp.13–28. Erişim adresi: https://engineering.purdue.edu
  • Oral, M.B., Reilinger, R.E., Toksöz, M.N., Kong, R.W., Barka, A.A., Kınık, I., Lenk, O. (1995). Global positioning system offers evidence of plate motions in eastern Mediterranean. EOS Transactions 76 (9). doi.org/10.1029/eo076i002p00009-01
  • Özkaymak, Ç., Sözbilir, H. ve Uzel B.(2013).Neogene Quaternary evolution of the Manisa Basin: Evidence for variation in the stress pattern of the İzmir-Balıkesir Transfer Zone, western Anatolia. Journal of Geodynamics Special issue: Tethyan Evolution, Anatolia, 65, 117-135. doi.org/10.1016/j.jog.2012.06.004
  • Ring, U., Laws, S., & Bernet, M. (1999). Structural analysis of a complex nappe sequence and late-orogenic basins from the Aegean Island of Samos, Greece. Journal of Structural Geology,21(11).doi.org/10.1016/S0191-8141(99)00108
  • Robertson. P.K., Campanella, R.G., Gillespie, D., and Greig, J. (1986). Use of Piezometer Cone data. In-Situ’86 Use of In-situ testing in Geotechnical Engineering, GSP 6, ASCE, Reston, VA, Specialty Publication, SM 92, pp 1263-1280. Erişim Adresi: www.researchgate.net/publication/285689813_Use_of_Piezometer_Cone_Data
  • Robertson, P.K. (1990). Soil classification using the cone penetration test. Canadian Geotechnical Journal, 27(1): 151-158. doi.org/10.1139/t90-014
  • Robertson, P.K. and Wride, C.E. (1998) Evaluating Cyclic Liquefaction Potential Using the Cone Penetration Test. Canadian Geotechnical Journal,35, 442-459. doi.org/10.1139/t98-017
  • Robertson, P.K. (2010). Soil Behaviour Type from the CPT: An Update. 2nd International Symposium on Cone Penetration Testing, Huntington Beach, Vol. 2, 575-583. Erişim Adresi:www.cpt-robertson.com
  • Sözbilir, H., Sümer, Ö., Uzel, B., Ersoy, Y., Erkül,F., Inci, ˙ U., Helvacı, C., Özkaymak, Ç.(2009). 17-20 Ekim 2005- Sığacık Körfezi(İzmir) ˙ depremlerinin sismik jeomorfolojisi ve bölgedeki gerilme alanları ile ilişkisi, Batı Anadolu. Türkiye Jeoloji Bülteni, 52, 217–238.Erişim adresi: https://dergipark.org.tr/tr/pub/tjb/issue/28366/301607
  • Şengör, A.M.C., Görür, N. and Saroğlu, F. (1985).“Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. In: Biddle, K., Christie-Blick, N. (Eds.), Strike-slip Faulting and Basin Formation”, Society of Economic Paleontologists and Mineralogists, Special Publication 37, Tulsa, OK. doi.org/10.2110/pec.85.37.0211
  • TBDY (2018). Türkiye Bina Deprem Yönetmeliği, İçişleri Bakanlığı, Afet ve Acil Durum Yönetimi Başkanlığı, Ankara. Erişim adres:https://tdth.afad.gov.tr
  • Yağmurlu, F. (1987). Salihli güneyinde üste doğru kabalaşan Neojen yaşlı alüvyonel yelpaze çökelleri ve Gediz Grabeni’nin tektonosedimanter gelişimi, Türkiye Jeoloji Bülteni, 30, 33-40.Erişim Adresi:www.jmo.org.tr
  • Yılmaz, H. (1986). Yeşilyurt (Alaşehir) sahasındaki uranyum belirtilerinin kökeni ve bunların depolanma sonrası aberasyonlarla tarihi: Türkiye Jeol, Kur. Bülteni. 294, 43-53.Erişim Adresi:www.jmo.org.tr
  • Youd, T.L., Idriss, I.M. (2001). Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. Journal of Geotechnical and Geoenvironmental Engineering, Vol. 127, No.4, April, 2001. doi.org/10.1061/(ASCE)1090-0241(2001)127:10(817)
  • Zhang, G., Robertson, P.K., and Brachman, R.W.I.(2002). Estimating Liquefaction-induced Ground Settlements from CPT for Level Ground. Can. Geotech J., 39, 1168–1180. doi.org/10.1139/t02-047
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Geology of Engineering
Journal Section Makaleler - Articles
Authors

Sevinç Ünsal Oral 0000-0001-8465-7795

Publication Date June 11, 2025
Submission Date November 30, 2024
Acceptance Date April 30, 2025
Published in Issue Year 2025 Volume: 49 Issue: 1

Cite

APA Ünsal Oral, S. (2025). Jeotermal Tesisler için Jeoteknik Özelliklerinin Belirlenmesi ve Sıvılaşma Sonrası Zemin Oturmalarının Değerlendirilmesi. Jeoloji Mühendisliği Dergisi, 49(1), 47-62. https://doi.org/10.24232/jmd.1594008