BibTex RIS Cite

Bioactive metabolite production by Streptomyces albolongus in favourable environment

Year 2013, , 75 - 82, 01.06.2013
https://doi.org/10.5799/ahinjs.02.2013.02.0085

Abstract

Objective: Demand for new antibiotic is rising up due to continuous resistance risk against conventional antibiotic. This attempt was taken to find out a novel antimicrobial metabolite. Methods: Chili field antagonistic actinomycetes Streptomyces albolongus was isolated and tested for optimum antimi­crobial metabolite production. Primary screening was done by selective media and antibiotic assay was done by agar cup plate method. Fermented product was recovered by separating funnel using suitable solvent. Results: Maximum antimicrobial metabolite production was found at temperature 35°C and pH 9.0 and on 6th day of incubation. The medium consisting of corn steep liquor (0.2%), glucose (1.0%), NaCl (0.5%), K2HPO4 (0.1%) was screened out as suitable medium for maximum antimicrobial production. Sucrose was found as the best carbon source among four sources. The antimicrobial metabolite was found to be stable at pH and temperature up to 11.0 and 100°C respec­tively. The active agent was best extracted with chloroform. The antimicrobial spectrum of the metabolite was wide and shows activity against Shigella dysenteriae (AE14612), Shigella sonnei (CRL, ICDDR, B), Salmonella typhi (AE14296), Vibrio cholerae (AE14748), Pseudomonas aeruginosa (CRL, ICDDR, B), Bacillus cereus (BTCC19), Staphylococcus aureus (ATCC6538), Bacillus subtilis (BTTC17) and Bacillus megaterium (BTTC18). Conclusion: The findings of antibacterial activity of S.albolongus against several species of human pathogens including both Gram-positive and Gram-negative bacteria indicated that our produced material might be an alternative antimi­crobial substance to control human diseases.

References

  • Rondon M, Raffel S, Goodman R, Handelsman J. Toward functional genomics in bacteria: analysis of gene expression in Escherichia coli from a bacterial artificial chromosome li- brary of Bacillus cereus. Microbiology 1999;96:6451-6455.
  • Pandey B, Ghimirel P, Prasad V, Thomas M, Chan Y, Ozanick S. Studies of the antimicrobial activity of the Actinomycetes isolated from the Khumby region of Nepal (Doctoral Thesis). Department of Bacteriology, University of Wisconsin-Madi- son, Madison, 2002. (Available at http://grad.uprm.edu/tesis/ riverarivera.pdf)
  • Osborne M, Grossman T, August P, Macneil I. Tapping into microbial diversity for natural products drug discovery ASM News 2000;7:66.
  • Omura S. Genome sequence of an industrial microorganism Streptomyces avermitilis deducing the ability of producing secondary metabolites. PNAS 2001;21:12215-12220.
  • Zhu M, Burman WJ, Jaresko GS. Population pharmacokinet- ics of intravenous and intramuscular Streptomycin in patients with tuberculosis. Pharmacotherapy 2001;21:1-4.
  • Nanjawade BK, Chandrashekhara S, Ali MS, Prakash SG, Fakirappa VM. Isolation and morphological characterization of antibiotic producing actinomycetes. Trop J Pharm Res 2010;9:231-236.
  • Floss HG, Yu T. Lessons from the rifamycin biosynthetic gene cluster. Curr Opin Chem Biol 1999;3:592-597.
  • Kremer LC, Dalen EV, Offringa M. Anthracycline-induced clini- cal heart failure in a cohort of 607 children: long-term follow- up study. J Clin Oncol 2001;19:191-196.
  • Kollef MH. New antimicrobial agents for methicillin-resistant Staphylococcus aureus. Crit Care Resusc 2009;11:282-286.
  • Mims C, Dockrell HM, Goering RV, Roitt I, Wakelin D, Zucker- man M. Attacking the Enemy: Antimicrobial Agents and Che- motherapy: Macrolides. In: Medical Microbiology 3rd edn. London: Mosby Ltd; 2004. p 489.
  • Harvery RA, Champe, PC. Lippincott’s Illustrated Reviews: Pharmacology, 4th edn. Philadelphia, Lippincott, Williams and Wilkins 2009.
  • Thomson CJ, Bialphos SH. Genetics and biochemistry of antibiotic production. In: L.C. Vining, C. Stuttardeds eds. 1955:197-222.
  • Jain P, Pundir RK. Effect of fermentation medium, pH and temperature variations on antibacterial soil fungal metabolite production. J Agricultur Technol 2011;7:247-269.
  • Sanchez S, Demain AL. Metabolic regulation of fermentation process. Enzyme Microb Technol 2002;31:895-906.
  • Kuster E, Williams ST. Selection of media for isolation of Streptomycetes. Nature London 1964;202:928-929.
  • Florey HW, Chain EB, Heatly NG, Jennings MA, Saunders AG, Abraham EP, Florey ME. Antibiotics. Oxford University Press, 1949:273-287.
  • Buchanon RE, Gibbons NE. Bergey’s Manual of Determina- tive Bacteriology, 8th edn. Williams and Wilkins Co. Balti- more, 1974:759.
  • Barry AL. The antimicrobial susceptibility test, principle and practices, 4th edn, ELBS, London 1976:180.
  • Chiaki I, Naoko K, Masazumi K, Takeshi K, Naoko H. Iso- lation and characterization of antibacterial substances pro- duced by marine actinomycetes in the presence of seawater. Actinomycetologica 2007;21:27-31.
  • Yucel S, Yamac M. Selection of Streptomyces isolates from Turkish karstic caves against antibiotic resistant microorgan- isms. Pak J Pharm Sci 2010;23:1-6.
  • Thakur D, Bora TC, Bordoloi GN, Mazumdar S. Influence of nutrition and culturing conditions for optimum growth and an- timicrobial metabolite production by Streptomyces sp. 201. J Med Myc 2009;19:161-167.
  • Yarbrough GG. Screening microbial metabolites for new drugs, theoretical and practical issues. Journal of Antibiotics 1993;46:535-544.
  • Stanbury PF. Principles of fermentation technology (Media for industrial fermentation). Butterrworth Heinemann Ltd, Linacre House, Jordan Hill, Oxford, UK 1997:93-116.
  • Abbanat D, Maiese W, Greenstein M. Biosynthesis of the pyrroindomycins by Streptomyces rugosporus LL-42D005; characterization of nutrient requirements. J Antibiot (Tokyo) 1999;52:117-126.
  • Gesheva V, Ivanova V, Gesheva R. Effects of nutrients on the production of AK- 111-81 macrolide antibiotic by Streptomy- ces hygroscopicus. Microbiol Res 2005;160:243-248.
  • Farid MA, el-Enshasy HA, el-Diwany AI, el-Sayed el-S A. Op- timization of the cultivation medium for natamycin production by Streptomyces natalensis. J Basic Microbiol 2000;40:157- 166.
  • Sujatha P, Bapi Raju KV, Ramana T. Studies on a new marine streptomycete BT-408 producing polyketide antibiotic SBR- 22 effective against methicillin resistant Staphylococcus au- reus. Microbiol Res 2005;160:119-126.
  • Antony-Babu S, Goodfellow M. Biosystematics of alkaliphi- lic streptomycetes isolated from seven locations across a beach and dune sand system. Antonie Van Leeuwenhoek 2008;94:581-591.
  • Narayana KJ, Vijayalakshmi M. Optimization of antimicrobial metabolites production by Streptomyces albidoflavus. Res J Pharmacol 2008;2:4-7.
  • Oskay M, Tamer AU, Azeri C. Antibacterial activity of some actinomycetes isolated from farming soils of Turkey. Afr J Biotechnol 2004;3:441-446.

Bioactive metabolite production by Streptomyces albolongus in favourable environment

Year 2013, , 75 - 82, 01.06.2013
https://doi.org/10.5799/ahinjs.02.2013.02.0085

Abstract

Amaç: Günümüzde konvansiyonel antibiyotiklere karşı artan direnç riski nedeniyle yeni antibiyotiklere gereksinim vardır. Bu çalışmada yeni bir antimikrobiyal bileşiğin elde edilmesi denenmektedir.Yöntemler: Bir aktinomiçes türü olan Streptomyces albolongus izole edilerek optimal antimikrobiyal metabolit üretimi açısından değerlendirildi. İlk tarama seçici besiyeri ve antibiyotik assay ise “agar cup-plate” metodu ile yapıldı. Fermente ürün uygun bir çözücü yardımıyla ayırma hunisi ile elde edildi. Bulgular: Maksimum antimikrobiyal metabolit üretimi 35°C sıcaklık ve pH 9.0’da inkübasyonun altıncı gününde gözlendi. Denen besiyerleri arasında mısır ıslatma suyu (%0,2), glukoz (%1), NaCl (%0,5) ve K2HPO4 (%0,1) içeren besiyeri maksimum metabolit üretimi için en uygun besiyeri idi. Sukroz, diğer dört kaynak arasında en iyi karbon kaynağı idi. Bulunan antimikrobiyal metabolit sırasıyla pH 11,0 ve 100°C sıcaklığa kadar dayanıklı idi. Aktif ajan en iyi kloroform ile ekstrakte edildi. Bulunan metabolitin antimikrobiyal spektrumu geniş idi ve Shigella dysenteriae (AE 14612), Shigella sonnei (CRL, ICDDR, B), Salmonella typhi (AE14296), Vibrio cholerae (AE14748), Pseudomonas aeruginosa (CRL, ICDDR, B), Bacillus cereus (BTCC19), Staphylococcus aureus (ATCC6538), Bacillus subtilis (BTTC17) ve Bacillus megaterium (BTTC18) gibi bakterileri kapsıyordu.Sonuç: Araştırmada S. albolongus’un Gram-positif ve Gram-negatif bakterileri içeren değişik insan patojenlerine karşı etkisi hakkında elde edilen bulgular ürettiğimiz materyalin insanlardaki hastalıkların kontrolünde alternatif antimikrobiyal bir madde olabileceğini göstermektedir

References

  • Rondon M, Raffel S, Goodman R, Handelsman J. Toward functional genomics in bacteria: analysis of gene expression in Escherichia coli from a bacterial artificial chromosome li- brary of Bacillus cereus. Microbiology 1999;96:6451-6455.
  • Pandey B, Ghimirel P, Prasad V, Thomas M, Chan Y, Ozanick S. Studies of the antimicrobial activity of the Actinomycetes isolated from the Khumby region of Nepal (Doctoral Thesis). Department of Bacteriology, University of Wisconsin-Madi- son, Madison, 2002. (Available at http://grad.uprm.edu/tesis/ riverarivera.pdf)
  • Osborne M, Grossman T, August P, Macneil I. Tapping into microbial diversity for natural products drug discovery ASM News 2000;7:66.
  • Omura S. Genome sequence of an industrial microorganism Streptomyces avermitilis deducing the ability of producing secondary metabolites. PNAS 2001;21:12215-12220.
  • Zhu M, Burman WJ, Jaresko GS. Population pharmacokinet- ics of intravenous and intramuscular Streptomycin in patients with tuberculosis. Pharmacotherapy 2001;21:1-4.
  • Nanjawade BK, Chandrashekhara S, Ali MS, Prakash SG, Fakirappa VM. Isolation and morphological characterization of antibiotic producing actinomycetes. Trop J Pharm Res 2010;9:231-236.
  • Floss HG, Yu T. Lessons from the rifamycin biosynthetic gene cluster. Curr Opin Chem Biol 1999;3:592-597.
  • Kremer LC, Dalen EV, Offringa M. Anthracycline-induced clini- cal heart failure in a cohort of 607 children: long-term follow- up study. J Clin Oncol 2001;19:191-196.
  • Kollef MH. New antimicrobial agents for methicillin-resistant Staphylococcus aureus. Crit Care Resusc 2009;11:282-286.
  • Mims C, Dockrell HM, Goering RV, Roitt I, Wakelin D, Zucker- man M. Attacking the Enemy: Antimicrobial Agents and Che- motherapy: Macrolides. In: Medical Microbiology 3rd edn. London: Mosby Ltd; 2004. p 489.
  • Harvery RA, Champe, PC. Lippincott’s Illustrated Reviews: Pharmacology, 4th edn. Philadelphia, Lippincott, Williams and Wilkins 2009.
  • Thomson CJ, Bialphos SH. Genetics and biochemistry of antibiotic production. In: L.C. Vining, C. Stuttardeds eds. 1955:197-222.
  • Jain P, Pundir RK. Effect of fermentation medium, pH and temperature variations on antibacterial soil fungal metabolite production. J Agricultur Technol 2011;7:247-269.
  • Sanchez S, Demain AL. Metabolic regulation of fermentation process. Enzyme Microb Technol 2002;31:895-906.
  • Kuster E, Williams ST. Selection of media for isolation of Streptomycetes. Nature London 1964;202:928-929.
  • Florey HW, Chain EB, Heatly NG, Jennings MA, Saunders AG, Abraham EP, Florey ME. Antibiotics. Oxford University Press, 1949:273-287.
  • Buchanon RE, Gibbons NE. Bergey’s Manual of Determina- tive Bacteriology, 8th edn. Williams and Wilkins Co. Balti- more, 1974:759.
  • Barry AL. The antimicrobial susceptibility test, principle and practices, 4th edn, ELBS, London 1976:180.
  • Chiaki I, Naoko K, Masazumi K, Takeshi K, Naoko H. Iso- lation and characterization of antibacterial substances pro- duced by marine actinomycetes in the presence of seawater. Actinomycetologica 2007;21:27-31.
  • Yucel S, Yamac M. Selection of Streptomyces isolates from Turkish karstic caves against antibiotic resistant microorgan- isms. Pak J Pharm Sci 2010;23:1-6.
  • Thakur D, Bora TC, Bordoloi GN, Mazumdar S. Influence of nutrition and culturing conditions for optimum growth and an- timicrobial metabolite production by Streptomyces sp. 201. J Med Myc 2009;19:161-167.
  • Yarbrough GG. Screening microbial metabolites for new drugs, theoretical and practical issues. Journal of Antibiotics 1993;46:535-544.
  • Stanbury PF. Principles of fermentation technology (Media for industrial fermentation). Butterrworth Heinemann Ltd, Linacre House, Jordan Hill, Oxford, UK 1997:93-116.
  • Abbanat D, Maiese W, Greenstein M. Biosynthesis of the pyrroindomycins by Streptomyces rugosporus LL-42D005; characterization of nutrient requirements. J Antibiot (Tokyo) 1999;52:117-126.
  • Gesheva V, Ivanova V, Gesheva R. Effects of nutrients on the production of AK- 111-81 macrolide antibiotic by Streptomy- ces hygroscopicus. Microbiol Res 2005;160:243-248.
  • Farid MA, el-Enshasy HA, el-Diwany AI, el-Sayed el-S A. Op- timization of the cultivation medium for natamycin production by Streptomyces natalensis. J Basic Microbiol 2000;40:157- 166.
  • Sujatha P, Bapi Raju KV, Ramana T. Studies on a new marine streptomycete BT-408 producing polyketide antibiotic SBR- 22 effective against methicillin resistant Staphylococcus au- reus. Microbiol Res 2005;160:119-126.
  • Antony-Babu S, Goodfellow M. Biosystematics of alkaliphi- lic streptomycetes isolated from seven locations across a beach and dune sand system. Antonie Van Leeuwenhoek 2008;94:581-591.
  • Narayana KJ, Vijayalakshmi M. Optimization of antimicrobial metabolites production by Streptomyces albidoflavus. Res J Pharmacol 2008;2:4-7.
  • Oskay M, Tamer AU, Azeri C. Antibacterial activity of some actinomycetes isolated from farming soils of Turkey. Afr J Biotechnol 2004;3:441-446.
There are 30 citations in total.

Details

Primary Language English
Journal Section ART
Authors

Myn Uddin This is me

Nuruddin Mahmud This is me

Nural Anwar This is me

Mohammed Abul Manchur This is me

Publication Date June 1, 2013
Published in Issue Year 2013

Cite

APA Uddin, M., Mahmud, N., Anwar, N., Manchur, M. A. (2013). Bioactive metabolite production by Streptomyces albolongus in favourable environment. Journal of Microbiology and Infectious Diseases, 3(02), 75-82. https://doi.org/10.5799/ahinjs.02.2013.02.0085
AMA Uddin M, Mahmud N, Anwar N, Manchur MA. Bioactive metabolite production by Streptomyces albolongus in favourable environment. J Microbil Infect Dis. June 2013;3(02):75-82. doi:10.5799/ahinjs.02.2013.02.0085
Chicago Uddin, Myn, Nuruddin Mahmud, Nural Anwar, and Mohammed Abul Manchur. “Bioactive Metabolite Production by Streptomyces Albolongus in Favourable Environment”. Journal of Microbiology and Infectious Diseases 3, no. 02 (June 2013): 75-82. https://doi.org/10.5799/ahinjs.02.2013.02.0085.
EndNote Uddin M, Mahmud N, Anwar N, Manchur MA (June 1, 2013) Bioactive metabolite production by Streptomyces albolongus in favourable environment. Journal of Microbiology and Infectious Diseases 3 02 75–82.
IEEE M. Uddin, N. Mahmud, N. Anwar, and M. A. Manchur, “Bioactive metabolite production by Streptomyces albolongus in favourable environment”, J Microbil Infect Dis, vol. 3, no. 02, pp. 75–82, 2013, doi: 10.5799/ahinjs.02.2013.02.0085.
ISNAD Uddin, Myn et al. “Bioactive Metabolite Production by Streptomyces Albolongus in Favourable Environment”. Journal of Microbiology and Infectious Diseases 3/02 (June 2013), 75-82. https://doi.org/10.5799/ahinjs.02.2013.02.0085.
JAMA Uddin M, Mahmud N, Anwar N, Manchur MA. Bioactive metabolite production by Streptomyces albolongus in favourable environment. J Microbil Infect Dis. 2013;3:75–82.
MLA Uddin, Myn et al. “Bioactive Metabolite Production by Streptomyces Albolongus in Favourable Environment”. Journal of Microbiology and Infectious Diseases, vol. 3, no. 02, 2013, pp. 75-82, doi:10.5799/ahinjs.02.2013.02.0085.
Vancouver Uddin M, Mahmud N, Anwar N, Manchur MA. Bioactive metabolite production by Streptomyces albolongus in favourable environment. J Microbil Infect Dis. 2013;3(02):75-82.

Cited By