Research Article
BibTex RIS Cite

Expansion of plasmid mediated blaACT-2 among Pseudomonas aeruginosa associated with postoperative infection and its transcriptional response under cephalosporin stress

Year 2017, Volume: 07 Issue: 02, 75 - 82, 01.06.2017
https://doi.org/10.5799/jmid.vi.328788

Abstract

Objectives: Organisms harboring multiple plasmid mediated β-lactamases are major concerns in nosocomial
infections. Among these plasmid mediated β-lactamases, ACT (EBC family) is a clinically important enzyme capable
of hydrolyzing broad spectrum cephalosporins. Therefore, the present study was undertaken to determine the
prevalence of ACT determinant along with other co-existing β-lactamase genes in P. aeruginosa strains.
Methods: A total of 176 Pseudomonas isolates were phenotypically screened for the presence of AmpC β-lactamase
by M3DET Method followed by Molecular detection using PCR assay. Transcriptional evaluation of blaACT-2 gene was
analyzed by RT-PCR and its transferability was performed by transformation and conjugation.
Results: Present study demonstrates the presence of ACT-2 allele among 12 strains of P. aeruginosa. Co-existence
of other β-lactamase genes were encountered among ACT-2 harboring strains which includes CTX-M (n=2), SHV
(n=3), TEM (n=2), VEB (n=2), OXA-10 (n=1), CIT (n=2) and DHA (n=3). Fingerprinting by REP PCR revealed the
isolates harboring ACT-2 to be distinct and these isolates showed high resistance to expanded-spectrum
cephalosporins and even to carbapenem group of drugs. This ACT-2 allele was encoded in the plasmid (L/M, FIA,
FIB Inc. Group) and conjugatively transferable. Transcriptional analysis revealed a significant increase in ACT-2
expression (483 fold) when induced by ceftriaxone at 4 µg/ml followed by ceftazidime at 8 µg/ml (31 fold) and
cefotaxime 4 µg/ml (8 fold).
Conclusion: In this study detection of ACT-2 plasmid mediated AmpC β-lactamase along with other β-lactamase
genes in clinical isolates of P. aeruginosa represents a serious therapeutic challenge. Therefore, revision in
antimicrobial policy is required for effective treatment of patients infected with pathogen expressing this mechanism.
J Microbiol Infect Dis 2017; 7(2): 75-82

References

  • 1. Lister PD, Wolter DJ, Hanson ND. AntibacterialResistant Pseudomonas aeruginosa: Clinical Impact and Complex Regulation of Chromosomally Encoded.Resistance Mechanisms. Clin Microbiol Rev 2009; 22 (4): 582–610.
  • 2. Livermore DM. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin Infect Dis 2002; 34: 634–640.
  • 3. Carlos J, Moya B, Perez J, Oliver A. Stepwise upregulation of the Pseudomonas aeruginosa chromosomal cephalosporinase conferring highlevel β-lactam resistance involves three ampD homologues. Antimicrob Agents Chemother 2006; 50:1780–1787.
  • 4. Jacoby GA. AmpC β-lactamases. Clin Microbiol Rev 2009; 22:161-182.
  • 5. Jacobs C, Joris B, Jamin M, et al. AmpD, essential for both β-lactamase regulation and cell wall recycling, is a novel cytosolic N-acetylmuramyl-Lalanine amidase. Mol Microbiol 1995; 15: 553–9.
  • 6. Lee S, Park YJ, Kim M, Lee HK, Han K, Kang CS. Prevalence of Ambler class A and D β- lactamases among clinical isolates of Pseudomonas aeruginosa in Korea. J Antimicrob Chemother 2005; 56: 122-127.
  • 7. Strateva T and Yordanov D. Pseudomonas aeruginosa – a phenomenon of bacterial resistance. J Med Microbiol 2009; 58: 1133–1148.
  • 8. Papagiannitsis CC, Tzouvelekis LS, Tzelepi E, Miriagou V. Plasmid-encoded ACC-4, an extended-spectrum cephalosporinase variant from Escherichia coli. Antimicrob Agents Chemother 2007; 51: 3763-3767.
  • 9. Bradford PA, Urban C, Mariano N, Projan SJ, Rahal JJ, Bush K. Imipenem resistance in Klebsiella pneumoniae is associated with the combination of ACT-1, a plasmid-mediated AmpC β-lactamase, and the loss of an outer membrane protein. Antimicrob Agents Chemother 1997; 41: 563–569.
  • 10. Chen Y, Cheng J, Wang Q, Ye Y, Li JB, Zhang XJ. ACT-3, a novel plasmid-encoded class C β- lactamase in a Klebsiella pneumoniae isolate from China. Int J Antimicrob Agents 2009; 33: 95–96.
  • 11. Datta S, Mitra S, Viswanathan R, Saha A, Basu S. Characterization of novel plasmid-mediated β- lactamases (SHV-167 and ACT-16) associated with New Delhi metallo-β-lactamase-1 harboring isolates from neonates in India. J Med Microbiol 2014; 63: 480-482.
  • 12. Reisbig MD, Hanson ND. The ACT-1 plasmidencoded AmpC β-lactamase is inducible: detection in a complex β-lactamase background. J Antimicrob Chemother 2002; 49:557–560.
  • 13. Barguigua A, Otmani FE, Talmi M, et al. Prevalence and genotypic analysis of plasmidmediated β-lactamases among urinary Klebsiella pneumoniae isolates in Moroccan community. The J Antibiotics 2012; 66: 11-16.
  • 14. Coudron PE, Hanson ND, Climo MW. Occurrence of extended-spectrum and AmpC β-lactamases in bloodstream isolates of Klebsiella pneumoniae: isolates harbor plasmid-mediated FOX-5 and ACT-1 AmpC β-lactamases. J. Clin. Microbiol 2003; 41:772–777.
  • 15. Lorian V. Antibiotics in laboratory medicine 2005; 5th edd. Philadelphia: Lippincott Williams and Wilkins.
  • 16. Coudron PE, Moland ES, Thomson KS. Occurrence and Detection of AmpC β-lactamases among Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis isolates at a Veterans Medical Center. J Clin Microbiol 2000; 38: 1791– 1796.
  • 17. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Third Informational Supplement. M100-S23. CLSI, Wayne, PA, USA, 2013.
  • 18. Caroline D, Anaelle DC, Dominique D, Christine F, Guillaume A. Development of a set of multiplex PCR assays for the detection of genes encoding important β-lactamases in Enterobacteriaceae. J Antimicrob Chemother 2010; 65: 490–495.
  • 19. Nass T, Cuzon G, Villegas MV, Lartigue MF, Quinn JP, Nordmann P. Genetic structures at the origin of acquisition of the β-lactamase blaKPC gene. Antimicrob Agents Chemother 2008; 52:1257–1263.
  • 20. Rasmussen BA, Bush K, Keeney D, et al. Characterization of IMI-1 β-lactamase, a class A carbapenem-hydrolyzing enzyme from Enterobacter cloaceae. Antimicrob Agents Chemother 1996; 40: 2080–2086.
  • 21. Nass T, Vandel L, Sougakoff W, Livermore DM, Nordmann P. Cloning and sequence analysis of the gene for a carbapenem hydrolyzing class A β- lactamase, Sme-1, from Serratia marcescens S6. Antimicrob Agents Chemother 1994; 38:1262– 1270.
  • 22. JH Y, Yi K, Lee H, et al. Molecular characterization of metallo-β-lacatamaseproducing Acinetobacter baumannii and Acinetbacter genomospecies 3 from Korea: identification of two new integrons carrying the blaVIM-2 gene cassettes. J Antimicrob Chemother 2002; 49: 837–840.
  • 23. Yong D, Toleman MA, Giske CG, et al. Characterization of a New Metallo-β-Lactamase Gene, blaNDM-1, and a Novel Erythromycin Esterase Gene Carried on a Unique Genetic Structure in Klebsiella pneumoniae Sequence Type 14 from India. Antimicrob Agents Chemother 2009; 53: 5046–5054.
  • 24. Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual (2nd edn). Plainview: New York: Cold Spring Harbor Laboratory Press, 1989.
  • 25. Carattoli A, Bertini A, Villa L, Falbo V, Hopkins KL, Threlfall EJ. Identification of plasmids by PCRbased replicon typing. J Microbiol Methods 2005; 63:219-228.
  • 26. Quale J, Bratu S, Gupta J, Landman D. Interplay of Efflux System, ampC and oprD expression in carbapenem resistance of Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother 2006; 50 (5): 1633-1641.
  • 27. Versalovic J, Schneider M, de Bruijn FJ, Lupski JR. Genomic fingerprinting of bacteria using repetitive sequence based polymerase chain reaction. Methods Mol Cell Biol 1994; 5: 25–40.
  • 28. Zhu B, zhang P, Huang Z, et al. Study on drug resistance of Pseudomonas aeruginosa plasmidmediated AmpC β-lactamase. Mol Med Reports 2013; 7: 664-668.
  • 29. Upadhyay S, Mishra S, Sen MR, Banerjee T, Bhattacharjee A. Co-existence of Pseudomonasderived cephalosporinase among plasmid encoded CMY 2 harboring isolates of Pseudomonas aeruginosa in north India. Indian J Med Microbiol 2013; 31(3): 257-260.
  • 30. Hanson ND, Thomson KS, Moland ES, Sanders CC, Berthold G, Penn R G. Molecular characterization of a multiply resistant Klebsiella pneumoniae encoding ESBLs and a plasmidmediated AmpC. J Antimicrob Chemother 1999; 44:377–380.
  • 31. Wei Y, Wang J. Identification of ACT-1 PlasmidMediated AmpC β-Lactamase Producing Citrobacter freundii from a Chinese Patient. Ann Lab Med 2013; 33: 86-88.
  • 32. Kollef MH, Ward S, Sherman G, Prentice D, Schaiff R, Huey W, Fraser VJ. Inadequate treatment of nosocomial infections is associated with certain empiric antibiotic choices. Crit Care Med 2000; 28: 3456–3464.
  • 33. Leone M, Bourgoin A, Cambon S, Dubuc M, Albanese J, Martin C. Empirical antimicrobial therapy of septic shock patients: adequacy and impact on the outcome, Crit. Care Med 2003; 31: 462–467.
  • 34. Pea F, Viale P. The antimicrobial therapy puzzle: could pharmacokinetic pharmacodynamic relationships be helpful in addressing the issue of appropriate pneumonia treatment in critically ill patients? Clin Infect Dis 2006; 42: 1764-1771.
  • 35. Roberts A, Lipman J, Blot S, Rello J. Better outcomes through continuous infusion of timedependent antibiotics to critically ill patients? Curr Opin Crit Care 2008; 14: 390–396.
  • 36. Richmond MH, Sykes RB. The β-lactamases of gram negative bacteria and their possible physiological role. Adv Microb Physiol 1973; 9: 31- 88.
  • 37. Sykes RB, Matthew M. The β-lactamases of gram negative bacteria and their role in resistance to β- lactam antibiotics. J Antimicrob Chemother 1997; 2: 115-157.
Year 2017, Volume: 07 Issue: 02, 75 - 82, 01.06.2017
https://doi.org/10.5799/jmid.vi.328788

Abstract

References

  • 1. Lister PD, Wolter DJ, Hanson ND. AntibacterialResistant Pseudomonas aeruginosa: Clinical Impact and Complex Regulation of Chromosomally Encoded.Resistance Mechanisms. Clin Microbiol Rev 2009; 22 (4): 582–610.
  • 2. Livermore DM. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin Infect Dis 2002; 34: 634–640.
  • 3. Carlos J, Moya B, Perez J, Oliver A. Stepwise upregulation of the Pseudomonas aeruginosa chromosomal cephalosporinase conferring highlevel β-lactam resistance involves three ampD homologues. Antimicrob Agents Chemother 2006; 50:1780–1787.
  • 4. Jacoby GA. AmpC β-lactamases. Clin Microbiol Rev 2009; 22:161-182.
  • 5. Jacobs C, Joris B, Jamin M, et al. AmpD, essential for both β-lactamase regulation and cell wall recycling, is a novel cytosolic N-acetylmuramyl-Lalanine amidase. Mol Microbiol 1995; 15: 553–9.
  • 6. Lee S, Park YJ, Kim M, Lee HK, Han K, Kang CS. Prevalence of Ambler class A and D β- lactamases among clinical isolates of Pseudomonas aeruginosa in Korea. J Antimicrob Chemother 2005; 56: 122-127.
  • 7. Strateva T and Yordanov D. Pseudomonas aeruginosa – a phenomenon of bacterial resistance. J Med Microbiol 2009; 58: 1133–1148.
  • 8. Papagiannitsis CC, Tzouvelekis LS, Tzelepi E, Miriagou V. Plasmid-encoded ACC-4, an extended-spectrum cephalosporinase variant from Escherichia coli. Antimicrob Agents Chemother 2007; 51: 3763-3767.
  • 9. Bradford PA, Urban C, Mariano N, Projan SJ, Rahal JJ, Bush K. Imipenem resistance in Klebsiella pneumoniae is associated with the combination of ACT-1, a plasmid-mediated AmpC β-lactamase, and the loss of an outer membrane protein. Antimicrob Agents Chemother 1997; 41: 563–569.
  • 10. Chen Y, Cheng J, Wang Q, Ye Y, Li JB, Zhang XJ. ACT-3, a novel plasmid-encoded class C β- lactamase in a Klebsiella pneumoniae isolate from China. Int J Antimicrob Agents 2009; 33: 95–96.
  • 11. Datta S, Mitra S, Viswanathan R, Saha A, Basu S. Characterization of novel plasmid-mediated β- lactamases (SHV-167 and ACT-16) associated with New Delhi metallo-β-lactamase-1 harboring isolates from neonates in India. J Med Microbiol 2014; 63: 480-482.
  • 12. Reisbig MD, Hanson ND. The ACT-1 plasmidencoded AmpC β-lactamase is inducible: detection in a complex β-lactamase background. J Antimicrob Chemother 2002; 49:557–560.
  • 13. Barguigua A, Otmani FE, Talmi M, et al. Prevalence and genotypic analysis of plasmidmediated β-lactamases among urinary Klebsiella pneumoniae isolates in Moroccan community. The J Antibiotics 2012; 66: 11-16.
  • 14. Coudron PE, Hanson ND, Climo MW. Occurrence of extended-spectrum and AmpC β-lactamases in bloodstream isolates of Klebsiella pneumoniae: isolates harbor plasmid-mediated FOX-5 and ACT-1 AmpC β-lactamases. J. Clin. Microbiol 2003; 41:772–777.
  • 15. Lorian V. Antibiotics in laboratory medicine 2005; 5th edd. Philadelphia: Lippincott Williams and Wilkins.
  • 16. Coudron PE, Moland ES, Thomson KS. Occurrence and Detection of AmpC β-lactamases among Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis isolates at a Veterans Medical Center. J Clin Microbiol 2000; 38: 1791– 1796.
  • 17. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Third Informational Supplement. M100-S23. CLSI, Wayne, PA, USA, 2013.
  • 18. Caroline D, Anaelle DC, Dominique D, Christine F, Guillaume A. Development of a set of multiplex PCR assays for the detection of genes encoding important β-lactamases in Enterobacteriaceae. J Antimicrob Chemother 2010; 65: 490–495.
  • 19. Nass T, Cuzon G, Villegas MV, Lartigue MF, Quinn JP, Nordmann P. Genetic structures at the origin of acquisition of the β-lactamase blaKPC gene. Antimicrob Agents Chemother 2008; 52:1257–1263.
  • 20. Rasmussen BA, Bush K, Keeney D, et al. Characterization of IMI-1 β-lactamase, a class A carbapenem-hydrolyzing enzyme from Enterobacter cloaceae. Antimicrob Agents Chemother 1996; 40: 2080–2086.
  • 21. Nass T, Vandel L, Sougakoff W, Livermore DM, Nordmann P. Cloning and sequence analysis of the gene for a carbapenem hydrolyzing class A β- lactamase, Sme-1, from Serratia marcescens S6. Antimicrob Agents Chemother 1994; 38:1262– 1270.
  • 22. JH Y, Yi K, Lee H, et al. Molecular characterization of metallo-β-lacatamaseproducing Acinetobacter baumannii and Acinetbacter genomospecies 3 from Korea: identification of two new integrons carrying the blaVIM-2 gene cassettes. J Antimicrob Chemother 2002; 49: 837–840.
  • 23. Yong D, Toleman MA, Giske CG, et al. Characterization of a New Metallo-β-Lactamase Gene, blaNDM-1, and a Novel Erythromycin Esterase Gene Carried on a Unique Genetic Structure in Klebsiella pneumoniae Sequence Type 14 from India. Antimicrob Agents Chemother 2009; 53: 5046–5054.
  • 24. Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual (2nd edn). Plainview: New York: Cold Spring Harbor Laboratory Press, 1989.
  • 25. Carattoli A, Bertini A, Villa L, Falbo V, Hopkins KL, Threlfall EJ. Identification of plasmids by PCRbased replicon typing. J Microbiol Methods 2005; 63:219-228.
  • 26. Quale J, Bratu S, Gupta J, Landman D. Interplay of Efflux System, ampC and oprD expression in carbapenem resistance of Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother 2006; 50 (5): 1633-1641.
  • 27. Versalovic J, Schneider M, de Bruijn FJ, Lupski JR. Genomic fingerprinting of bacteria using repetitive sequence based polymerase chain reaction. Methods Mol Cell Biol 1994; 5: 25–40.
  • 28. Zhu B, zhang P, Huang Z, et al. Study on drug resistance of Pseudomonas aeruginosa plasmidmediated AmpC β-lactamase. Mol Med Reports 2013; 7: 664-668.
  • 29. Upadhyay S, Mishra S, Sen MR, Banerjee T, Bhattacharjee A. Co-existence of Pseudomonasderived cephalosporinase among plasmid encoded CMY 2 harboring isolates of Pseudomonas aeruginosa in north India. Indian J Med Microbiol 2013; 31(3): 257-260.
  • 30. Hanson ND, Thomson KS, Moland ES, Sanders CC, Berthold G, Penn R G. Molecular characterization of a multiply resistant Klebsiella pneumoniae encoding ESBLs and a plasmidmediated AmpC. J Antimicrob Chemother 1999; 44:377–380.
  • 31. Wei Y, Wang J. Identification of ACT-1 PlasmidMediated AmpC β-Lactamase Producing Citrobacter freundii from a Chinese Patient. Ann Lab Med 2013; 33: 86-88.
  • 32. Kollef MH, Ward S, Sherman G, Prentice D, Schaiff R, Huey W, Fraser VJ. Inadequate treatment of nosocomial infections is associated with certain empiric antibiotic choices. Crit Care Med 2000; 28: 3456–3464.
  • 33. Leone M, Bourgoin A, Cambon S, Dubuc M, Albanese J, Martin C. Empirical antimicrobial therapy of septic shock patients: adequacy and impact on the outcome, Crit. Care Med 2003; 31: 462–467.
  • 34. Pea F, Viale P. The antimicrobial therapy puzzle: could pharmacokinetic pharmacodynamic relationships be helpful in addressing the issue of appropriate pneumonia treatment in critically ill patients? Clin Infect Dis 2006; 42: 1764-1771.
  • 35. Roberts A, Lipman J, Blot S, Rello J. Better outcomes through continuous infusion of timedependent antibiotics to critically ill patients? Curr Opin Crit Care 2008; 14: 390–396.
  • 36. Richmond MH, Sykes RB. The β-lactamases of gram negative bacteria and their possible physiological role. Adv Microb Physiol 1973; 9: 31- 88.
  • 37. Sykes RB, Matthew M. The β-lactamases of gram negative bacteria and their role in resistance to β- lactam antibiotics. J Antimicrob Chemother 1997; 2: 115-157.
There are 37 citations in total.

Details

Subjects Health Care Administration
Journal Section ART
Authors

Birson İngti , Deepjyoti Paul Anand Prakash Maurya This is me

Publication Date June 1, 2017
Published in Issue Year 2017 Volume: 07 Issue: 02

Cite

APA Anand Prakash Maurya, B. İ. ,. D. P. (2017). Expansion of plasmid mediated blaACT-2 among Pseudomonas aeruginosa associated with postoperative infection and its transcriptional response under cephalosporin stress. Journal of Microbiology and Infectious Diseases, 07(02), 75-82. https://doi.org/10.5799/jmid.vi.328788
AMA Anand Prakash Maurya Bİ,DP. Expansion of plasmid mediated blaACT-2 among Pseudomonas aeruginosa associated with postoperative infection and its transcriptional response under cephalosporin stress. J Microbil Infect Dis. June 2017;07(02):75-82. doi:10.5799/jmid.vi.328788
Chicago Anand Prakash Maurya, Birson İngti , Deepjyoti Paul. “Expansion of Plasmid Mediated BlaACT-2 Among Pseudomonas Aeruginosa Associated With Postoperative Infection and Its Transcriptional Response under Cephalosporin Stress”. Journal of Microbiology and Infectious Diseases 07, no. 02 (June 2017): 75-82. https://doi.org/10.5799/jmid.vi.328788.
EndNote Anand Prakash Maurya Bİ,DP (June 1, 2017) Expansion of plasmid mediated blaACT-2 among Pseudomonas aeruginosa associated with postoperative infection and its transcriptional response under cephalosporin stress. Journal of Microbiology and Infectious Diseases 07 02 75–82.
IEEE B. İ. ,. D. P. Anand Prakash Maurya, “Expansion of plasmid mediated blaACT-2 among Pseudomonas aeruginosa associated with postoperative infection and its transcriptional response under cephalosporin stress”, J Microbil Infect Dis, vol. 07, no. 02, pp. 75–82, 2017, doi: 10.5799/jmid.vi.328788.
ISNAD Anand Prakash Maurya, Birson İngti , Deepjyoti Paul. “Expansion of Plasmid Mediated BlaACT-2 Among Pseudomonas Aeruginosa Associated With Postoperative Infection and Its Transcriptional Response under Cephalosporin Stress”. Journal of Microbiology and Infectious Diseases 07/02 (June 2017), 75-82. https://doi.org/10.5799/jmid.vi.328788.
JAMA Anand Prakash Maurya Bİ,DP. Expansion of plasmid mediated blaACT-2 among Pseudomonas aeruginosa associated with postoperative infection and its transcriptional response under cephalosporin stress. J Microbil Infect Dis. 2017;07:75–82.
MLA Anand Prakash Maurya, Birson İngti , Deepjyoti Paul. “Expansion of Plasmid Mediated BlaACT-2 Among Pseudomonas Aeruginosa Associated With Postoperative Infection and Its Transcriptional Response under Cephalosporin Stress”. Journal of Microbiology and Infectious Diseases, vol. 07, no. 02, 2017, pp. 75-82, doi:10.5799/jmid.vi.328788.
Vancouver Anand Prakash Maurya Bİ,DP. Expansion of plasmid mediated blaACT-2 among Pseudomonas aeruginosa associated with postoperative infection and its transcriptional response under cephalosporin stress. J Microbil Infect Dis. 2017;07(02):75-82.