Research Article
BibTex RIS Cite
Year 2021, Volume: 11 Issue: 04, 183 - 190, 15.12.2021
https://doi.org/10.5799/jmid.1036727

Abstract

References

  • 1. Kagirita AA, Baguma A, Owalla TJ, Bazira J, Majalija S. Molecular Characterization of Salmonella from Human and Animal Origins in Uganda. Int J Bacteriol. 2017.
  • 2. Andoh LA, Ahmed S, Olsen JE, et al. prevalence and characterization of Salmonella among humans in Ghana. Trop Med Health. 2017; 45(1):3.
  • 3. Antillón M, Warren JL, Crawford FW et al. The burden of typhoid fever in low- and middle-income countries: A meta-regression approach. PLoS Negl Trop Dis. 2017;11(2)
  • 4. Marks F, von Kalckreuth V, Aaby P, et al. Incidence of invasive salmonella disease in sub-Saharan Africa: a multicentre population-based surveillance study. Lancet Glob Health. 2017 5(3)
  • 5. Sirinavin S, Garner P. Antibiotics for treating salmonella gut infections. Cochrane Database Syst Rev. 1999 (1).
  • 6. Kariuki S, Revathi G, Muyodi J, et al. Characterization of Multidrug-Resistant Typhoid Outbreaks in Kenya. J Clin Microbiol. 2004; 42(4):1477–82.
  • 7. Kajumbula H, Fujita AW, Mbabazi O, et al. Antimicrobial Drug Resistance in Blood Culture Isolates at a Tertiary Hospital, Uganda. Emerg Infect Dis. 2018; 24(1):174–5.
  • 8. Nyabundi D, Onkoba N, Kimathi R, et al. Molecular characterization and antibiotic resistance profiles of Salmonella isolated from fecal matter of domestic animals and animal products in Nairobi. Trop Dis Travel Med Vaccines. 2017; 13;3.
  • 9. Langata LM, Maingi JM, Musonye HA, Kiiru J, Nyamache AK. Antimicrobial resistance genes in Salmonella and Escherichia coli isolates from chicken droppings in Nairobi, Kenya. BMC Res Notes. 2019;12(1):22.
  • 10. Kabiswa W, Nanteza A, Tumwine G, Majalija S. Phylogenetic Groups and Antimicrobial Susceptibility Patterns of Escherichia coli from Healthy Chicken in Eastern and Central Uganda. J Vet Med. 2018.
  • 11. Bii CC, Taguchi H, Ouko TT, Muita LW, Wamae N, Kamiya S. Detection of virulence-related genes by multiplex PCR in multidrug-resistant diarrhoeagenic Escherichia coli isolates from Kenya and Japan. Epidemiol Infect. 2005; 133(4):627–33.
  • 12. Subbiah M, Caudell MA, Mair C, et al. Antimicrobial resistant enteric bacteria are widely distributed amongst people, animals and the environment in Tanzania. Nat Commun. 2020;11(1):228.
  • 13. Moremi N, Claus H, Mshana SE. Antimicrobial resistance pattern: a report of microbiological cultures at a tertiary hospital in Tanzania. BMC Infect Dis. 2016; 16(1):756.
  • 14. Chang Y, Shin H, Lee J-H, Park CJ, Paik S-Y, Ryu S. Isolation and Genome Characterization of the Virulent Staphylococcus aureus Bacteriophage SA97. Viruses. 2015; 7(10):5225–42.
  • 15. Byrne MK, Miellet S, McGlinn A, et al. The drivers of antibiotic use and misuse: the development and investigation of a theory driven community measure. BMC Public Health. 2019;19(1):1425.
  • 16. Wang I-N. Lysis timing and bacteriophage fitness. Genetics. 2006; 172(1):17–26.
  • 17. Oduor JMO, Onkoba N, Maloba F, Nyachieo A. Experimental phage therapy against haematogenous multi-drug resistant Staphylococcus aureus pneumonia in mice. Afr J Lab Med. 2016;5(1):435.
  • 18. Abatángelo V, Bacci NP, Boncompain CA, et al. Broad-range lytic bacteriophages that kill Staphylococcus aureus local field strains. PLOS ONE. 2017;12(7).
  • 19. Lupindu AM. Isolation and characterization of Escherichia coli from animals, humans, and environment. 2017.
  • 20. Seyede TM, Amiri D, Saeid M, Farzaneh K, Saeid B. Identification of different Escherichia coli pathotypes in north and north-west provinces of Iran. Iran J Microbiol. 2017; 9(1).
  • 21. Reller LB, Weinstein M, Jorgensen JH, Ferraro MJ. Antimicrobial Susceptibility Testing: A Review of General Principles and Contemporary Practices. Clin Infect Dis. 2009; 49(11):1749–55.
  • 22. Wommack KE, Williamson KE, Helton RR, Bench SR, Winget DM. Methods for the Isolation of Viruses from Environmental Samples. Totowa, NJ: Humana Press; 2009. p. 3–14.
  • 23. Jończyk E, Kłak M, Międzybrodzki R, Górski A. The influence of external factors on bacteriophages—review. Folia Microbiol (Praha). 2011; 56(3):191–200.
  • 24. Rasheed MU, Thajuddin N, Ahamed P, Teklemariam Z, Jamil K. Antimicrobial drug resistance in strains of Escherichia coli isolated from food sources. Rev Inst Med Trop Sao Paulo. 2014; 56(4):341–6.
  • 25. Colello R, Krüger A, Conza JD, et al. Antimicrobial Resistance in Class 1 Integron-Positive Shiga Toxin-Producing Escherichia coli Isolated from Cattle, Pigs, Food and Farm Environment. Microorganisms. 2018;6(4).
  • 26. Keen EC. A century of phage research: Bacteriophages and the shaping of modern biology. BioEssays. 2015;37(1):6–9.
  • 27. Khawaja K, Abbas Z, Rehman S. Isolation and characterization of lytic phagesTSE1-3 against Enterobacter cloacae. Open Life sciences. 2016;11: 287–292.
  • 28. Weinbauer MG. Ecology of prokaryotic viruses. FEMS Microbiol Rev. 2004; 28(2):127–81.
  • 29. Cohen ML. Changing patterns of infectious disease. Nature. 2000 :762–767.

Isolation and Characterization of Novel Lytic Phages to Combat Multidrug-Resistant E. coli and Salmonella spp.

Year 2021, Volume: 11 Issue: 04, 183 - 190, 15.12.2021
https://doi.org/10.5799/jmid.1036727

Abstract

Objectives: Escherichia coli and some Salmonella enterica serovars are zoonotic pathogens affecting livestock and humans. These pathogens cause significant loss of productivity in livestock, severe morbidity and mortality in humans, and have high antibiotic resistance profiles. Therefore, the exploitation of lytic phages for therapeutic purposes is important for eliminating these resistant bacterial strains.
Methods: Thirty-four bacterial stock isolates comprised of 23 E. coli and 11 Salmonella spp. strains were evaluated for antimicrobial susceptibility to seven antibiotics using the Kirby-Bauer disk diffusion test. The antibiotics included Ciprofloxacin, Trimethoprim-Sulphamethoxazole, Gentamycin, Imipenem, Ceftriaxone, Cefotaxime, and Ofloxacin. Twelve (12/23) E. coli and (2/11) Salmonella spp. exhibited antimicrobial resistance. Selected six (6/12) drug-resistant E. coli strains were subjected to three different phages (PA5, EHEC005, C11S1A) for efficacy and host range assay. Similarly, two (2/2) resistant Salmonella strains were exposed to one Salmonella phage A23 for efficacy and host range assay. The E. coli (C11S1A) phage, which infected most bacterial hosts, was evaluated for optimal efficiency at various pH and temperatures.
Results: E. coli isolates had the highest resistance 12/23 (52%) compared to Salmonella spp. 2/11(18%) (p<0.05). Most resistance was against Trimethoprim-Sulphamethoxazole (44%) and (9%) for E. coli and Salmonella spp., respectively. Furthermore, E. coli (C11S1A) phages killed all the Escherichia coli strains, while Salmonella phage A23 only lysed the host bacteria. The E. coli (C11S1A) phages were highly efficacious at 37 0C and pH 7.4.
Conclusion: The successful isolation of novel lytic E. coli (C11S1A) phages, which killed all the E. coli strains tested, demonstrates the potential for therapeutic purposes for humans and livestock. J Microbiol Infect Dis 2021; 11(4):183-190.

References

  • 1. Kagirita AA, Baguma A, Owalla TJ, Bazira J, Majalija S. Molecular Characterization of Salmonella from Human and Animal Origins in Uganda. Int J Bacteriol. 2017.
  • 2. Andoh LA, Ahmed S, Olsen JE, et al. prevalence and characterization of Salmonella among humans in Ghana. Trop Med Health. 2017; 45(1):3.
  • 3. Antillón M, Warren JL, Crawford FW et al. The burden of typhoid fever in low- and middle-income countries: A meta-regression approach. PLoS Negl Trop Dis. 2017;11(2)
  • 4. Marks F, von Kalckreuth V, Aaby P, et al. Incidence of invasive salmonella disease in sub-Saharan Africa: a multicentre population-based surveillance study. Lancet Glob Health. 2017 5(3)
  • 5. Sirinavin S, Garner P. Antibiotics for treating salmonella gut infections. Cochrane Database Syst Rev. 1999 (1).
  • 6. Kariuki S, Revathi G, Muyodi J, et al. Characterization of Multidrug-Resistant Typhoid Outbreaks in Kenya. J Clin Microbiol. 2004; 42(4):1477–82.
  • 7. Kajumbula H, Fujita AW, Mbabazi O, et al. Antimicrobial Drug Resistance in Blood Culture Isolates at a Tertiary Hospital, Uganda. Emerg Infect Dis. 2018; 24(1):174–5.
  • 8. Nyabundi D, Onkoba N, Kimathi R, et al. Molecular characterization and antibiotic resistance profiles of Salmonella isolated from fecal matter of domestic animals and animal products in Nairobi. Trop Dis Travel Med Vaccines. 2017; 13;3.
  • 9. Langata LM, Maingi JM, Musonye HA, Kiiru J, Nyamache AK. Antimicrobial resistance genes in Salmonella and Escherichia coli isolates from chicken droppings in Nairobi, Kenya. BMC Res Notes. 2019;12(1):22.
  • 10. Kabiswa W, Nanteza A, Tumwine G, Majalija S. Phylogenetic Groups and Antimicrobial Susceptibility Patterns of Escherichia coli from Healthy Chicken in Eastern and Central Uganda. J Vet Med. 2018.
  • 11. Bii CC, Taguchi H, Ouko TT, Muita LW, Wamae N, Kamiya S. Detection of virulence-related genes by multiplex PCR in multidrug-resistant diarrhoeagenic Escherichia coli isolates from Kenya and Japan. Epidemiol Infect. 2005; 133(4):627–33.
  • 12. Subbiah M, Caudell MA, Mair C, et al. Antimicrobial resistant enteric bacteria are widely distributed amongst people, animals and the environment in Tanzania. Nat Commun. 2020;11(1):228.
  • 13. Moremi N, Claus H, Mshana SE. Antimicrobial resistance pattern: a report of microbiological cultures at a tertiary hospital in Tanzania. BMC Infect Dis. 2016; 16(1):756.
  • 14. Chang Y, Shin H, Lee J-H, Park CJ, Paik S-Y, Ryu S. Isolation and Genome Characterization of the Virulent Staphylococcus aureus Bacteriophage SA97. Viruses. 2015; 7(10):5225–42.
  • 15. Byrne MK, Miellet S, McGlinn A, et al. The drivers of antibiotic use and misuse: the development and investigation of a theory driven community measure. BMC Public Health. 2019;19(1):1425.
  • 16. Wang I-N. Lysis timing and bacteriophage fitness. Genetics. 2006; 172(1):17–26.
  • 17. Oduor JMO, Onkoba N, Maloba F, Nyachieo A. Experimental phage therapy against haematogenous multi-drug resistant Staphylococcus aureus pneumonia in mice. Afr J Lab Med. 2016;5(1):435.
  • 18. Abatángelo V, Bacci NP, Boncompain CA, et al. Broad-range lytic bacteriophages that kill Staphylococcus aureus local field strains. PLOS ONE. 2017;12(7).
  • 19. Lupindu AM. Isolation and characterization of Escherichia coli from animals, humans, and environment. 2017.
  • 20. Seyede TM, Amiri D, Saeid M, Farzaneh K, Saeid B. Identification of different Escherichia coli pathotypes in north and north-west provinces of Iran. Iran J Microbiol. 2017; 9(1).
  • 21. Reller LB, Weinstein M, Jorgensen JH, Ferraro MJ. Antimicrobial Susceptibility Testing: A Review of General Principles and Contemporary Practices. Clin Infect Dis. 2009; 49(11):1749–55.
  • 22. Wommack KE, Williamson KE, Helton RR, Bench SR, Winget DM. Methods for the Isolation of Viruses from Environmental Samples. Totowa, NJ: Humana Press; 2009. p. 3–14.
  • 23. Jończyk E, Kłak M, Międzybrodzki R, Górski A. The influence of external factors on bacteriophages—review. Folia Microbiol (Praha). 2011; 56(3):191–200.
  • 24. Rasheed MU, Thajuddin N, Ahamed P, Teklemariam Z, Jamil K. Antimicrobial drug resistance in strains of Escherichia coli isolated from food sources. Rev Inst Med Trop Sao Paulo. 2014; 56(4):341–6.
  • 25. Colello R, Krüger A, Conza JD, et al. Antimicrobial Resistance in Class 1 Integron-Positive Shiga Toxin-Producing Escherichia coli Isolated from Cattle, Pigs, Food and Farm Environment. Microorganisms. 2018;6(4).
  • 26. Keen EC. A century of phage research: Bacteriophages and the shaping of modern biology. BioEssays. 2015;37(1):6–9.
  • 27. Khawaja K, Abbas Z, Rehman S. Isolation and characterization of lytic phagesTSE1-3 against Enterobacter cloacae. Open Life sciences. 2016;11: 287–292.
  • 28. Weinbauer MG. Ecology of prokaryotic viruses. FEMS Microbiol Rev. 2004; 28(2):127–81.
  • 29. Cohen ML. Changing patterns of infectious disease. Nature. 2000 :762–767.
There are 29 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Research Article
Authors

Atunga Nyachieo This is me

Stephen Alafi This is me

Ivy Jepkurui Mutai This is me

Benson Ngolobe This is me

Ritah Nabunje This is me

Jesca L. Nakavuma This is me

Publication Date December 15, 2021
Published in Issue Year 2021 Volume: 11 Issue: 04

Cite

APA Nyachieo, A., Alafi, S., Mutai, I. J., Ngolobe, B., et al. (2021). Isolation and Characterization of Novel Lytic Phages to Combat Multidrug-Resistant E. coli and Salmonella spp. Journal of Microbiology and Infectious Diseases, 11(04), 183-190. https://doi.org/10.5799/jmid.1036727
AMA Nyachieo A, Alafi S, Mutai IJ, Ngolobe B, Nabunje R, Nakavuma JL. Isolation and Characterization of Novel Lytic Phages to Combat Multidrug-Resistant E. coli and Salmonella spp. J Microbil Infect Dis. December 2021;11(04):183-190. doi:10.5799/jmid.1036727
Chicago Nyachieo, Atunga, Stephen Alafi, Ivy Jepkurui Mutai, Benson Ngolobe, Ritah Nabunje, and Jesca L. Nakavuma. “ Coli and Salmonella Spp”. Journal of Microbiology and Infectious Diseases 11, no. 04 (December 2021): 183-90. https://doi.org/10.5799/jmid.1036727.
EndNote Nyachieo A, Alafi S, Mutai IJ, Ngolobe B, Nabunje R, Nakavuma JL (December 1, 2021) Isolation and Characterization of Novel Lytic Phages to Combat Multidrug-Resistant E. coli and Salmonella spp. Journal of Microbiology and Infectious Diseases 11 04 183–190.
IEEE A. Nyachieo, S. Alafi, I. J. Mutai, B. Ngolobe, R. Nabunje, and J. L. Nakavuma, “ coli and Salmonella spp”., J Microbil Infect Dis, vol. 11, no. 04, pp. 183–190, 2021, doi: 10.5799/jmid.1036727.
ISNAD Nyachieo, Atunga et al. “ Coli and Salmonella Spp”. Journal of Microbiology and Infectious Diseases 11/04 (December 2021), 183-190. https://doi.org/10.5799/jmid.1036727.
JAMA Nyachieo A, Alafi S, Mutai IJ, Ngolobe B, Nabunje R, Nakavuma JL. Isolation and Characterization of Novel Lytic Phages to Combat Multidrug-Resistant E. coli and Salmonella spp. J Microbil Infect Dis. 2021;11:183–190.
MLA Nyachieo, Atunga et al. “ Coli and Salmonella Spp”. Journal of Microbiology and Infectious Diseases, vol. 11, no. 04, 2021, pp. 183-90, doi:10.5799/jmid.1036727.
Vancouver Nyachieo A, Alafi S, Mutai IJ, Ngolobe B, Nabunje R, Nakavuma JL. Isolation and Characterization of Novel Lytic Phages to Combat Multidrug-Resistant E. coli and Salmonella spp. J Microbil Infect Dis. 2021;11(04):183-90.