Research Article
BibTex RIS Cite
Year 2022, Volume: 12 Issue: 03, 116 - 126, 17.09.2022
https://doi.org/10.5799/jmid.1176537

Abstract

References

  • 1. Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG Jr. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 2015; 28(3):603-61.
  • 2. Lee AS, De Lencastre H, Garau J, Kluytmans J, Malhotra-Kumar S, Peschel A, Harbarth S. Methicillin-resistant Staphylococcus aureus. Nat Rev Dis Primers 2018; 4(1):1-23.
  • 3. Joshi S, Ray P, Manchanda V et al. Methicillin resistant Staphylococcus aureus (MRSA) in India: prevalence & susceptibility pattern. Indian J Med Res. 2013; 137(2): 363-9.
  • 4. Xue Y, Gyi AA. Predictive Risk Factors for Methicillin-Resistant Staphylococcus aureus (MRSA) Colonisation among Adults in Acute Care Settings: A Systematic Review. JBI Libr Syst Rev 2012; 10(54):3487-3560.
  • 5. Del Rio A, Cervera C, Moreno A, Moreillon P, Miró JM. Patients at risk of complications of Staphylococcus aureus bloodstream infection. Clin Infect Dis 2009; 48(Suppl 4): S246-253.
  • 6. CDC, Division of Health Care Quality Promotion Issue in Health Care settings. Laboratory Detection of Oxacillin/Methicillin-resistant Staphylococcus aureus. https://www.cdc.gov/hai/settings/lab/lab_mrsa.html (Accessed on: May 3, 2022)
  • 7. Lowy FD. Antimicrobial Resistance: the example of Staphylococcus aureus. J Clin Invest 2003; 111(9):1265-1273.
  • 8. Argudín MA, Roisin S, Nienhaus L et al. Genetic diversity among S. aureus isolates showing oxacillin and/or cefoxitin resistance not linked to the presence of mec genes. Antimicrob Agents Chemother. 2018; 62(7): e00091-18.
  • 9. Liu C, Chen ZJ, Sun Z et al. Molecular characteristics and virulence factors in methicillin-susceptible, resistant, and heterogeneous vancomycin-intermediate Staphylococcus aureus from central-southern China. J Microbiol Immunol Infect 2015; 48: 490-496.
  • 10. Cong Y, Yang S, Rao X. Vancomycin resistant Staphylococcus aureus infections: A review of case updating and clinical features. J Adv Res 2020; 21:169-176.
  • 11. Bakthavatchalam YD, Babu P, Munusamy E, et al. Genomic insights on heterogeneous resistance to vancomycin and teicoplanin in Methicillin-resistant Staphylococcus aureus: A first report from South India. PloS One. 2019; 14: e0227009.
  • 12. Baddour MM, AbuElKheir MM, Fatani AJ. Comparison of mecA Polymerase Chain Reaction with phenotypic methods for the detection of methicillin-resistant Staphylococcus aureus. Current microbiology. 2007; 55:473-479.
  • 13. Velasco D, del Mar Tomas M, Cartelle M, et al. Evaluation of different methods for detecting methicillin(oxacillin) resistance in Staphylococcus aureus. J Antimicrob Chemother. 2005; 55:379-382.
  • 14. CLSI Clinical and Laboratory Standards Institute. Performance standards for Antimicrobial Sensitivity Testing. 27th edition. CLSI Supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute; 2017. Available from: https://clsi.org/media/1469/m100s27_sample.pdf
  • 15. Srinivasan S, Sheela D, Mathew R, Bazroy J, Kanungo R. Risk factors and associated problems in the management of infections with methicillin resistant Staphylococcus aureus. Indian J Med Microbiol 2006; 24:182-185.
  • 16. Pournajaf A, Ardebili A, Goudarzi L, Khodabandeh M, Narimani T, Abbaszadeh H. PCR-based identification of methicillin–resistant Staphylococcus aureus strains and their antibiotic resistance profiles. Asian Pac J Trop Biomed 2014; 4: S293-7.
  • 17. Stürenburg E. Rapid detection of methicillin-resistant Staphylococcus aureus directly from clinical samples: methods, effectiveness and cost considerations. Ger Med Sci 2009; 7: Doc06.
  • 18. Luteijn JM, Hubben GA, Pechlivanoglou P, Bonten MJ, Postma MJ. Diagnostic accuracy of culture-based and PCR-based detection tests for methicillin-resistant Staphylococcus aureus: a meta-analysis. Clin Microbiol Infect. 2011; 17:146-154.
  • 19. Felten A, Grandry B, Lagrange PH, Casin I. Evaluation of Three Techniques for Detection of Low-Level Methicillin-Resistant Staphylococcus aureus (MRSA) Disk Diffusion Method with Cefoxitin and Moxalactam, the Vitek 2 System, and the MRSA-Screen Latex Agglutination Test. J Clin Microbiol 2002; 40: 2766-2771.
  • 20. Rahbar M. Islami P. Moulanace S, Pirayesh K. Evaluation cefoxitin 30 mcg disc diffusion test for routine detection of methicillin-resistant Staphylococcus aureus (MRSA). Pak J Med Sci 2006; 22(4):449-413.
  • 21. Kluytmans J. Griethuysen AV, Willemse P, Keulen PV. Performance of CHROMagar Selective Medium and Oxacillin Resistance Screening Agar Base for Identifying Staphylococcus aureus and Detecting Methicillin Resistance. J Clin Microbiol. 2002; 40(7):2480-2482.
  • 22. Merlino J, Leroi M, Bradbury R, Veal D, Harbour C. New Chromogenic Identification and Detection of Staphylococcus aureus and Methicillin-Resistant Staphylococcus aureus. J Clin Microbiol 2000; 38: 2378-2380.

Comparison of Different Phenotypic Methods of Detection of Methicillin-Resistant Staphylococcus aureus with Polymerase Chain Reaction

Year 2022, Volume: 12 Issue: 03, 116 - 126, 17.09.2022
https://doi.org/10.5799/jmid.1176537

Abstract

Objectives: The objective of the current study was to compare the diagnostic methods of Oxacillin Disk Diffusion, Cefoxitin Disk Diffusion, Oxacillin Resistance Screening Agar Base, and CHROM Agar MRSA with the gold-standard method of Polymerase Chain Reaction for detection of Methicillin-resistant Staphylococcus aureus.
Methods: Two hundred pus samples were included in the study from which Staphylococcus strains were evaluated. The isolates of Staphylococcus aureus were subjected to the Oxacillin Disk Diffusion test, Cefoxitin Disk Diffusion test, Oxacillin Resistance Screening Agar Base, and CHROM Agar MRSA to detect MRSA with PCR, the reference standard. The diagnostic techniques were compared to their sensitivity, specificity, positive predictive, and negative predictive values.
Results: The sensitivity of the Cefoxitin Disk Diffusion test was 100%, followed by CHROM Agar MRSA at 96.7%, Oxacillin Disk Diffusion at 90%, and Oxacillin Resistance Screening Agar Base at 86.7%. Most specific was the Cefoxitin Disk Diffusion test (99.4%), followed by Oxacillin Resistance Screening Agar Base (98.8%), CHROM Agar MRSA (97.7%), and the least specific was the Oxacillin Disk Diffusion test (96.5%).
Conclusion: The Cefoxitin Disk Diffusion test was the most sensitive and specific of all four methods, next to the Polymerase Chain Reaction. However, future multicentric studies are recommended to test this method across all prevalent centers of methicillin resistance. J Microbiol Infect Dis 2022; 12(3):116-126.

References

  • 1. Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG Jr. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 2015; 28(3):603-61.
  • 2. Lee AS, De Lencastre H, Garau J, Kluytmans J, Malhotra-Kumar S, Peschel A, Harbarth S. Methicillin-resistant Staphylococcus aureus. Nat Rev Dis Primers 2018; 4(1):1-23.
  • 3. Joshi S, Ray P, Manchanda V et al. Methicillin resistant Staphylococcus aureus (MRSA) in India: prevalence & susceptibility pattern. Indian J Med Res. 2013; 137(2): 363-9.
  • 4. Xue Y, Gyi AA. Predictive Risk Factors for Methicillin-Resistant Staphylococcus aureus (MRSA) Colonisation among Adults in Acute Care Settings: A Systematic Review. JBI Libr Syst Rev 2012; 10(54):3487-3560.
  • 5. Del Rio A, Cervera C, Moreno A, Moreillon P, Miró JM. Patients at risk of complications of Staphylococcus aureus bloodstream infection. Clin Infect Dis 2009; 48(Suppl 4): S246-253.
  • 6. CDC, Division of Health Care Quality Promotion Issue in Health Care settings. Laboratory Detection of Oxacillin/Methicillin-resistant Staphylococcus aureus. https://www.cdc.gov/hai/settings/lab/lab_mrsa.html (Accessed on: May 3, 2022)
  • 7. Lowy FD. Antimicrobial Resistance: the example of Staphylococcus aureus. J Clin Invest 2003; 111(9):1265-1273.
  • 8. Argudín MA, Roisin S, Nienhaus L et al. Genetic diversity among S. aureus isolates showing oxacillin and/or cefoxitin resistance not linked to the presence of mec genes. Antimicrob Agents Chemother. 2018; 62(7): e00091-18.
  • 9. Liu C, Chen ZJ, Sun Z et al. Molecular characteristics and virulence factors in methicillin-susceptible, resistant, and heterogeneous vancomycin-intermediate Staphylococcus aureus from central-southern China. J Microbiol Immunol Infect 2015; 48: 490-496.
  • 10. Cong Y, Yang S, Rao X. Vancomycin resistant Staphylococcus aureus infections: A review of case updating and clinical features. J Adv Res 2020; 21:169-176.
  • 11. Bakthavatchalam YD, Babu P, Munusamy E, et al. Genomic insights on heterogeneous resistance to vancomycin and teicoplanin in Methicillin-resistant Staphylococcus aureus: A first report from South India. PloS One. 2019; 14: e0227009.
  • 12. Baddour MM, AbuElKheir MM, Fatani AJ. Comparison of mecA Polymerase Chain Reaction with phenotypic methods for the detection of methicillin-resistant Staphylococcus aureus. Current microbiology. 2007; 55:473-479.
  • 13. Velasco D, del Mar Tomas M, Cartelle M, et al. Evaluation of different methods for detecting methicillin(oxacillin) resistance in Staphylococcus aureus. J Antimicrob Chemother. 2005; 55:379-382.
  • 14. CLSI Clinical and Laboratory Standards Institute. Performance standards for Antimicrobial Sensitivity Testing. 27th edition. CLSI Supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute; 2017. Available from: https://clsi.org/media/1469/m100s27_sample.pdf
  • 15. Srinivasan S, Sheela D, Mathew R, Bazroy J, Kanungo R. Risk factors and associated problems in the management of infections with methicillin resistant Staphylococcus aureus. Indian J Med Microbiol 2006; 24:182-185.
  • 16. Pournajaf A, Ardebili A, Goudarzi L, Khodabandeh M, Narimani T, Abbaszadeh H. PCR-based identification of methicillin–resistant Staphylococcus aureus strains and their antibiotic resistance profiles. Asian Pac J Trop Biomed 2014; 4: S293-7.
  • 17. Stürenburg E. Rapid detection of methicillin-resistant Staphylococcus aureus directly from clinical samples: methods, effectiveness and cost considerations. Ger Med Sci 2009; 7: Doc06.
  • 18. Luteijn JM, Hubben GA, Pechlivanoglou P, Bonten MJ, Postma MJ. Diagnostic accuracy of culture-based and PCR-based detection tests for methicillin-resistant Staphylococcus aureus: a meta-analysis. Clin Microbiol Infect. 2011; 17:146-154.
  • 19. Felten A, Grandry B, Lagrange PH, Casin I. Evaluation of Three Techniques for Detection of Low-Level Methicillin-Resistant Staphylococcus aureus (MRSA) Disk Diffusion Method with Cefoxitin and Moxalactam, the Vitek 2 System, and the MRSA-Screen Latex Agglutination Test. J Clin Microbiol 2002; 40: 2766-2771.
  • 20. Rahbar M. Islami P. Moulanace S, Pirayesh K. Evaluation cefoxitin 30 mcg disc diffusion test for routine detection of methicillin-resistant Staphylococcus aureus (MRSA). Pak J Med Sci 2006; 22(4):449-413.
  • 21. Kluytmans J. Griethuysen AV, Willemse P, Keulen PV. Performance of CHROMagar Selective Medium and Oxacillin Resistance Screening Agar Base for Identifying Staphylococcus aureus and Detecting Methicillin Resistance. J Clin Microbiol. 2002; 40(7):2480-2482.
  • 22. Merlino J, Leroi M, Bradbury R, Veal D, Harbour C. New Chromogenic Identification and Detection of Staphylococcus aureus and Methicillin-Resistant Staphylococcus aureus. J Clin Microbiol 2000; 38: 2378-2380.
There are 22 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Research Article
Authors

Nupur Gupta This is me

Manoj Jais This is me

Priyanshu Kumar Shrivastava This is me

Aditi Sharma This is me

Publication Date September 17, 2022
Published in Issue Year 2022 Volume: 12 Issue: 03

Cite

APA Gupta, N., Jais, M., Shrivastava, P. K., Sharma, A. (2022). Comparison of Different Phenotypic Methods of Detection of Methicillin-Resistant Staphylococcus aureus with Polymerase Chain Reaction. Journal of Microbiology and Infectious Diseases, 12(03), 116-126. https://doi.org/10.5799/jmid.1176537
AMA Gupta N, Jais M, Shrivastava PK, Sharma A. Comparison of Different Phenotypic Methods of Detection of Methicillin-Resistant Staphylococcus aureus with Polymerase Chain Reaction. J Microbil Infect Dis. September 2022;12(03):116-126. doi:10.5799/jmid.1176537
Chicago Gupta, Nupur, Manoj Jais, Priyanshu Kumar Shrivastava, and Aditi Sharma. “Comparison of Different Phenotypic Methods of Detection of Methicillin-Resistant Staphylococcus Aureus With Polymerase Chain Reaction”. Journal of Microbiology and Infectious Diseases 12, no. 03 (September 2022): 116-26. https://doi.org/10.5799/jmid.1176537.
EndNote Gupta N, Jais M, Shrivastava PK, Sharma A (September 1, 2022) Comparison of Different Phenotypic Methods of Detection of Methicillin-Resistant Staphylococcus aureus with Polymerase Chain Reaction. Journal of Microbiology and Infectious Diseases 12 03 116–126.
IEEE N. Gupta, M. Jais, P. K. Shrivastava, and A. Sharma, “Comparison of Different Phenotypic Methods of Detection of Methicillin-Resistant Staphylococcus aureus with Polymerase Chain Reaction”, J Microbil Infect Dis, vol. 12, no. 03, pp. 116–126, 2022, doi: 10.5799/jmid.1176537.
ISNAD Gupta, Nupur et al. “Comparison of Different Phenotypic Methods of Detection of Methicillin-Resistant Staphylococcus Aureus With Polymerase Chain Reaction”. Journal of Microbiology and Infectious Diseases 12/03 (September 2022), 116-126. https://doi.org/10.5799/jmid.1176537.
JAMA Gupta N, Jais M, Shrivastava PK, Sharma A. Comparison of Different Phenotypic Methods of Detection of Methicillin-Resistant Staphylococcus aureus with Polymerase Chain Reaction. J Microbil Infect Dis. 2022;12:116–126.
MLA Gupta, Nupur et al. “Comparison of Different Phenotypic Methods of Detection of Methicillin-Resistant Staphylococcus Aureus With Polymerase Chain Reaction”. Journal of Microbiology and Infectious Diseases, vol. 12, no. 03, 2022, pp. 116-2, doi:10.5799/jmid.1176537.
Vancouver Gupta N, Jais M, Shrivastava PK, Sharma A. Comparison of Different Phenotypic Methods of Detection of Methicillin-Resistant Staphylococcus aureus with Polymerase Chain Reaction. J Microbil Infect Dis. 2022;12(03):116-2.