Research Article
BibTex RIS Cite

Reactive Sintering of Boron Carbide Based Ceramics by SPS

Year 2022, , 129 - 136, 06.06.2022
https://doi.org/10.55546/jmm.1072466

Abstract

Boron carbide is a highly covalent non-oxide ceramic with a high melting temperature. Therefore, the densification of boron carbide via a thermally activated process is extremely hard and requires additional driving forces. In addition to searching alternative production techniques for boron carbide, the production of boron carbide composites is one of the most interested subjects. In this study, BxC-TiB2-SiC ceramic was produced through an in-situ reaction between B4C and Ti3SiC2 and excess amorphous boron using spark plasma sintering method at 1600°C-1800°C. XRD and microstructure analysis of the sintered sample show that boron rich boron carbide phase is present in the sintered specimen, which did not develop a continuous matrix through the sample. The three phases present in ceramics formed agglomerate throughout the microstructure and did not show homogeneous distribution.

Supporting Institution

Kütahya Dumlupinar University Scientific Research Projects Commission and YOK-MEVLANA

Project Number

project no: 2017-67 and MEV.2018-9999

Thanks

This study was supported by Kütahya Dumlupinar University Scientific Research Projects Commission, project 2017-67 and YOK-MEVLANA PROJECT (MEV.2018-9999). Authors wish to thank Prof. Dr. Hasan Göçmez and Prof. Dr. Mustafa Tuncer for the help their technical feedback.

References

  • Angers R., Beauvy M., Hot-pressing of boron carbide, Ceramics international 10(2), 49-55, 1984.
  • Aselage T. L, Tissot R. G., Lattice constants of boron carbides. Journal of the American Ceramic Society 75 (8), 2207-2212, 1992.
  • Biçer H., Akdoğan E., Şavklıyıldız İ, Haines C., Zhong Z., Tsakalakos T., Thermal expansion of nano–boron carbide under constant DC electric field: An in situ energy dispersive X-ray diffraction study using a synchrotron probe. Journal of Materials Research 35(1), 90-97, 2020.
  • Canakci A., Erdemir F., Varol T., Patir A., Determining the effect of process parameters on particle size in mechanical milling using the Taguchi method: measurement and analysis. Measurement 46(9), 3532-3540, 2013.
  • Ding D., Chong X., Xiao G., Lv L., Lei C., Luo J., Zang, Y., Combustion synthesis of B4C/Al2O3/C composite powders and their effects on properties of low carbon MgO-C refractories. Ceramics International 45(13), 16433-16441, 2019.
  • Domnich V., Reynaud S., Haber R. A., Chhowalla M., Boron carbide: structure, properties, and stability under stress. Journal of the American Ceramic Society 94(11), 3605-3628, 2011.
  • He P., Dong S., Kan Y., Zhang X., Ding Y., Microstructure and mechanical properties of B4C–TiB2 composites prepared by reaction hot pressing using Ti3SiC2 as additive. Ceramics International 42(1), 650-656, 2016.
  • He Q., Xie J., Wang A., Liu C., Tian T., Hu L., Fu Z., Effects of boron content on the microstructures and mechanical properties of reactive hot-pressed BxC-TiB2-SiC composites. Ceramics International 45(16), 19650-19657, 2019.
  • Liu Y., Wu X., Liu M., Huang Y., Huang Z., Microstructure and mechanical properties of B4C–TiB2–SiC composites fabricated by spark plasma sintering. Ceramics International 46(3), 3793-3800, 2020.
  • Munir Z. A., Anselmi-Tamburini U., Ohyanagi M., The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method. Journal of Materials Science 41(3), 763-777, 2006.
  • Skorokhod V., Vlajic M. D., Krstic V. D., Mechanical properties of pressureless sintered boron carbide containing TiB 2 phase. Journal of materials science letters 15(15),1337-1339,1996.
  • Song Q., Zhang Z. H., Hu Z. Y., Yin S. P., Wang H., Li X. Y., Cheng X. W., Influences of the pre-oxidation time on the microstructure and flexural strength of monolithic B4C ceramic and TiB2-SiC/B4C composite ceramic. Journal of Alloys and Compounds 831, 154852, 2020.
  • Thevenot F., Boron carbide—a comprehensive review. Journal of the European Ceramic Society 6(4), 205-225, 1990.
  • Wen Q., Tan Y., Zhong Z., Zhang H., Zhou X., High toughness and electrical discharge machinable B4C-TiB2-SiC composites fabricated at low sintering temperature. Materials Science and Engineering: A 701, 338-343, 2017.
  • Ye F., Hou Z., Zhang H., Liu L., Densification and mechanical properties of spark plasma sintered B4C with Si as a sintering aid. Journal of the American Ceramic Society 93(10), 2956-2959, 2010.
  • Yin S. P., Zhang Z. H., Cheng X. W., Su T. J., Hu Z. Y., Song Q., Wang H., Spark plasma sintering of B4C-TiB2-SiC composite ceramics using B4C, Ti3SiC2 and Si as starting materials. Ceramics International 44(17), 21626-21632, 2018.
  • Zhang X., Zhang Z., Wang W., Shan J., Che H., Mu J., Wang G., Microstructure and mechanical properties of B4C–TiB2–SiC composites toughened by composite structural toughening phases. Journal of the American Ceramic Society 100(7), 3099-3107, 2017.

Bor Karbür Tabanlı Seramiklerin Reaktif Spark Plazma Sinterleme ile Üretimi

Year 2022, , 129 - 136, 06.06.2022
https://doi.org/10.55546/jmm.1072466

Abstract

Bor karbür, yüksek ergime sıcaklığına sahip, oldukça kovalent, oksit dışı bir seramiktir. Bu nedenle, bor karbürün termal olarak aktive edilmiş işlem yoluyla yoğunlaştırılması son derece zordur ve ekstra itici güçler gerektirir. Bor karbür için alternatif üretim tekniklerinin araştırılmasının yanı sıra bor karbür kompozitlerin üretimi de en çok ilgi duyulan konulardan biridir. Bu çalışmada, 1600°C-1800°C'de kıvılcım plazma sinterleme yöntemi kullanılarak B4C ve Ti3SiC2 (ve ekstra amorf bor) arasındaki in-situ reaksiyonla BxC-TiB2-SiC seramikleri üretilmiştir. Yoğunlaştırılmış numunelerin XRD ve mikro yapı analizi, bor bakımından zengin bor karbür fazın numune boyunca sürekli matris geliştirmediğini göstermektedir. Seramiklerde bulunan üç faz, mikro yapı boyunca aglomera oluşturdu ve homojen bir dağılım göstermedi.

Project Number

project no: 2017-67 and MEV.2018-9999

References

  • Angers R., Beauvy M., Hot-pressing of boron carbide, Ceramics international 10(2), 49-55, 1984.
  • Aselage T. L, Tissot R. G., Lattice constants of boron carbides. Journal of the American Ceramic Society 75 (8), 2207-2212, 1992.
  • Biçer H., Akdoğan E., Şavklıyıldız İ, Haines C., Zhong Z., Tsakalakos T., Thermal expansion of nano–boron carbide under constant DC electric field: An in situ energy dispersive X-ray diffraction study using a synchrotron probe. Journal of Materials Research 35(1), 90-97, 2020.
  • Canakci A., Erdemir F., Varol T., Patir A., Determining the effect of process parameters on particle size in mechanical milling using the Taguchi method: measurement and analysis. Measurement 46(9), 3532-3540, 2013.
  • Ding D., Chong X., Xiao G., Lv L., Lei C., Luo J., Zang, Y., Combustion synthesis of B4C/Al2O3/C composite powders and their effects on properties of low carbon MgO-C refractories. Ceramics International 45(13), 16433-16441, 2019.
  • Domnich V., Reynaud S., Haber R. A., Chhowalla M., Boron carbide: structure, properties, and stability under stress. Journal of the American Ceramic Society 94(11), 3605-3628, 2011.
  • He P., Dong S., Kan Y., Zhang X., Ding Y., Microstructure and mechanical properties of B4C–TiB2 composites prepared by reaction hot pressing using Ti3SiC2 as additive. Ceramics International 42(1), 650-656, 2016.
  • He Q., Xie J., Wang A., Liu C., Tian T., Hu L., Fu Z., Effects of boron content on the microstructures and mechanical properties of reactive hot-pressed BxC-TiB2-SiC composites. Ceramics International 45(16), 19650-19657, 2019.
  • Liu Y., Wu X., Liu M., Huang Y., Huang Z., Microstructure and mechanical properties of B4C–TiB2–SiC composites fabricated by spark plasma sintering. Ceramics International 46(3), 3793-3800, 2020.
  • Munir Z. A., Anselmi-Tamburini U., Ohyanagi M., The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method. Journal of Materials Science 41(3), 763-777, 2006.
  • Skorokhod V., Vlajic M. D., Krstic V. D., Mechanical properties of pressureless sintered boron carbide containing TiB 2 phase. Journal of materials science letters 15(15),1337-1339,1996.
  • Song Q., Zhang Z. H., Hu Z. Y., Yin S. P., Wang H., Li X. Y., Cheng X. W., Influences of the pre-oxidation time on the microstructure and flexural strength of monolithic B4C ceramic and TiB2-SiC/B4C composite ceramic. Journal of Alloys and Compounds 831, 154852, 2020.
  • Thevenot F., Boron carbide—a comprehensive review. Journal of the European Ceramic Society 6(4), 205-225, 1990.
  • Wen Q., Tan Y., Zhong Z., Zhang H., Zhou X., High toughness and electrical discharge machinable B4C-TiB2-SiC composites fabricated at low sintering temperature. Materials Science and Engineering: A 701, 338-343, 2017.
  • Ye F., Hou Z., Zhang H., Liu L., Densification and mechanical properties of spark plasma sintered B4C with Si as a sintering aid. Journal of the American Ceramic Society 93(10), 2956-2959, 2010.
  • Yin S. P., Zhang Z. H., Cheng X. W., Su T. J., Hu Z. Y., Song Q., Wang H., Spark plasma sintering of B4C-TiB2-SiC composite ceramics using B4C, Ti3SiC2 and Si as starting materials. Ceramics International 44(17), 21626-21632, 2018.
  • Zhang X., Zhang Z., Wang W., Shan J., Che H., Mu J., Wang G., Microstructure and mechanical properties of B4C–TiB2–SiC composites toughened by composite structural toughening phases. Journal of the American Ceramic Society 100(7), 3099-3107, 2017.
There are 17 citations in total.

Details

Primary Language English
Subjects Ceramics in Materials Engineering
Journal Section Research Articles
Authors

Hülya Biçer 0000-0001-6633-7085

Project Number project no: 2017-67 and MEV.2018-9999
Publication Date June 6, 2022
Submission Date February 12, 2022
Published in Issue Year 2022

Cite

APA Biçer, H. (2022). Reactive Sintering of Boron Carbide Based Ceramics by SPS. Journal of Materials and Mechatronics: A, 3(1), 129-136. https://doi.org/10.55546/jmm.1072466
AMA Biçer H. Reactive Sintering of Boron Carbide Based Ceramics by SPS. J. Mater. Mechat. A. June 2022;3(1):129-136. doi:10.55546/jmm.1072466
Chicago Biçer, Hülya. “Reactive Sintering of Boron Carbide Based Ceramics by SPS”. Journal of Materials and Mechatronics: A 3, no. 1 (June 2022): 129-36. https://doi.org/10.55546/jmm.1072466.
EndNote Biçer H (June 1, 2022) Reactive Sintering of Boron Carbide Based Ceramics by SPS. Journal of Materials and Mechatronics: A 3 1 129–136.
IEEE H. Biçer, “Reactive Sintering of Boron Carbide Based Ceramics by SPS”, J. Mater. Mechat. A, vol. 3, no. 1, pp. 129–136, 2022, doi: 10.55546/jmm.1072466.
ISNAD Biçer, Hülya. “Reactive Sintering of Boron Carbide Based Ceramics by SPS”. Journal of Materials and Mechatronics: A 3/1 (June 2022), 129-136. https://doi.org/10.55546/jmm.1072466.
JAMA Biçer H. Reactive Sintering of Boron Carbide Based Ceramics by SPS. J. Mater. Mechat. A. 2022;3:129–136.
MLA Biçer, Hülya. “Reactive Sintering of Boron Carbide Based Ceramics by SPS”. Journal of Materials and Mechatronics: A, vol. 3, no. 1, 2022, pp. 129-36, doi:10.55546/jmm.1072466.
Vancouver Biçer H. Reactive Sintering of Boron Carbide Based Ceramics by SPS. J. Mater. Mechat. A. 2022;3(1):129-36.