Research Article
BibTex RIS Cite

Comparison of Welded Joint Stress with Experimental and Finite Element Method Using of Hotspot Method

Year 2023, , 11 - 22, 26.06.2023
https://doi.org/10.55546/jmm.1116198

Abstract

The purpose of the welded structures is to combine the two different structures defined as the workpiece and the main material in order to ensure that they remain in the elastic deformation zone by meeting the loading conditions safely. Welding parameters such as preheating, welding speed, shielding gas selection, filler wire selection, voltage, current values affect the mechanical properties of the HAZ zone and the general structure, especially when welding fine-grained structural steels are performed. Strain gauge sensors can give normal stress and shear stress values for structures forced by static loadings depending on the stable x, y, z axes. The hotspot stress method used with the finite element method gives closer results to experimental studies. In this study, two different S960QL steels were combined with workpiece and main material using MAG welding. Data were taken from the strain gauge sensor connected to the samples prepared by the hotspot stress method. Using the finite element method, different types of models were analyzed and experimental data were compared with analysis outputs. As a result of the comparison, the most accurate welded joint analysis modeling with the hotspot method has been determined by the results of the experiment and analysis and has been proven with an accuracy rate of 89%.

Supporting Institution

MPG Makine

Thanks

MPG Makine

References

  • Ali D., Abbas H., Abdullah T., Numerical analysis of stress distribution during tunneling in clay stone rock. International Journal of Engineering 33(8), 1472-1478i, 2020.
  • Büyükbayram C., Koç B., Tekin G., Salihoğlu B., Fatigue strength evaluation approach of welded joints for more reliable and lighter military ground vehicles. Procedia Engineering 133, 485-500, 2015.
  • Dong Y., Teixeira A., Soares C.G., Fatigue reliability analysis of butt welded joints with misalignments based on hotspot stress approach. Marine Structures 65, 215-228, 2019.
  • Eriksson Å., Lignell A.-M., Olsson, C., Spennare, H., Weld evaluation using FEM: a guide to fatigue-loaded structures. Industrilitteratur 2003.
  • Feng R., Tang C., Roy K., Chen Z., Chen B, Lim, J. B., An experimental study on stress concentration factors of stainless steel hybrid tubular K-joints. Thin-Walled Structures 157, 107064, 2020.
  • Güven F., Rende H., An analysis of endurance limit-modifying factors depending on bead shape and thickness in load-carrying welded T-joints. Journal of the Brazilian Society of Mechanical Sciences and Engineering 42(2), 1-8, 2020.
  • Hobbacher A., Recommendations for fatigue design of welded joints and components (Vol. 47). Springer, 2016.
  • Iqbal N., Fang H., Naseem A., Kashif M., De Backer H., A numerical evaluation of structural hot-spot stress methods in rib-to-deck joint of orthotropic steel deck. Applied Sciences 10(19), 6924, 2020.
  • Kim Y., Oh J.-S., Jeon S.-H., Novel hot spot stress calculations for welded joints using 3D solid finite elements. Marine Structures 44, 1-18, 2015.
  • Li S., Ren S., Zhang Y., Deng D., Murakawa H., Numerical investigation of formation mechanism of welding residual stress in P92 steel multi-pass joints. Journal of Materials Processing Technology 244, 240-252, 2017.
  • Meyghani B., Awang M., Wu C., Thermal analysis of friction stir welding with a complex curved welding seam. International Journal of Engineering 32(10), 1480-1484, 2019.
  • Niemi E., Fricke W., Maddox S. J., The structural hot-spot stress approach to fatigue analysis. In Structural Hot-Spot Stress Approach to Fatigue Analysis of Welded Components (pp. 5-12). Springer, 2018.
  • Schroepfer D., Kromm A., Kannengiesser T., Improving welding stresses by filler metal and heat control selection in component-related butt joints of high-strength steel. Welding in the World 59(3), 455-464, 2015.
  • Shin W., Chang K.-H., Muzaffer S., Fatigue analysis of cruciform welded joint with weld penetration defects. Engineering Failure Analysis 120, 105111, 2021.
  • Yamamoto N., Sugimoto T., Ishibashi, K., Tanaka, S., A study on the type-b hot spot stress. Welding in the World 64(11), 1833-1842, 2020.

Hotspot Yöntemi Kullanılarak Deneysel ve Sonlu Elemanlar Yöntemi ile Kaynaklı Bağlantı Gerilmelerinin Karşılaştırılması

Year 2023, , 11 - 22, 26.06.2023
https://doi.org/10.55546/jmm.1116198

Abstract

Kaynaklı yapıların amacı, iş parçası ve ana malzeme olarak tanımlanan iki farklı yapıyı birleştirmek ve yükleme koşullarını güvenli bir şekilde karşılayarak elastik deformasyon bölgesinde kalmalarını sağlamaktır. Özellikle ince taneli yapı çeliklerinin kaynağı yapılırken ön ısıtma, kaynak hızı, koruyucu gaz seçimi, dolgu teli seçimi, gerilim, akım değerleri gibi kaynak parametreleri HAZ bölgesinin mekanik özelliklerini ve genel yapıyı etkilemektedir. Gerinim ölçer sensörler, x, y, z eksenine bağlı olarak statik yükler tarafından zorlanan yapılar için normal gerilme ve kayma gerilme değerlerini verebilmektedir. Kaynaklı bağlantılarda hotspot gerilme yöntemi, sonlu elemanlar yöntemi ve deneysel çalışmalarda daha doğru sonuçlar vermektedir. Bu çalışmada iki farklı numunede S960QL çeliği, MAG kaynağı kullanılarak iş parçası ve ana malzeme birleştirilmiştir. Hotspot gerilme yöntemi ile hazırlanan numunelere bağlı gerinim ölçer sensörlerinden veriler alınmıştır. Sonlu elemanlar yöntemi kullanılarak farklı parametrelerde modeller analiz edilmiş ve deneysel veriler ile karşılaştırılmıştır. Karşılaştırma sonucunda hotspot gerilme yöntemi ile en doğru kaynaklı bağlantı analizi modellemesi deney ve analiz sonuçları ile belirlenmiş ve %89 doğruluk oranı ile kanıtlanmıştır.

References

  • Ali D., Abbas H., Abdullah T., Numerical analysis of stress distribution during tunneling in clay stone rock. International Journal of Engineering 33(8), 1472-1478i, 2020.
  • Büyükbayram C., Koç B., Tekin G., Salihoğlu B., Fatigue strength evaluation approach of welded joints for more reliable and lighter military ground vehicles. Procedia Engineering 133, 485-500, 2015.
  • Dong Y., Teixeira A., Soares C.G., Fatigue reliability analysis of butt welded joints with misalignments based on hotspot stress approach. Marine Structures 65, 215-228, 2019.
  • Eriksson Å., Lignell A.-M., Olsson, C., Spennare, H., Weld evaluation using FEM: a guide to fatigue-loaded structures. Industrilitteratur 2003.
  • Feng R., Tang C., Roy K., Chen Z., Chen B, Lim, J. B., An experimental study on stress concentration factors of stainless steel hybrid tubular K-joints. Thin-Walled Structures 157, 107064, 2020.
  • Güven F., Rende H., An analysis of endurance limit-modifying factors depending on bead shape and thickness in load-carrying welded T-joints. Journal of the Brazilian Society of Mechanical Sciences and Engineering 42(2), 1-8, 2020.
  • Hobbacher A., Recommendations for fatigue design of welded joints and components (Vol. 47). Springer, 2016.
  • Iqbal N., Fang H., Naseem A., Kashif M., De Backer H., A numerical evaluation of structural hot-spot stress methods in rib-to-deck joint of orthotropic steel deck. Applied Sciences 10(19), 6924, 2020.
  • Kim Y., Oh J.-S., Jeon S.-H., Novel hot spot stress calculations for welded joints using 3D solid finite elements. Marine Structures 44, 1-18, 2015.
  • Li S., Ren S., Zhang Y., Deng D., Murakawa H., Numerical investigation of formation mechanism of welding residual stress in P92 steel multi-pass joints. Journal of Materials Processing Technology 244, 240-252, 2017.
  • Meyghani B., Awang M., Wu C., Thermal analysis of friction stir welding with a complex curved welding seam. International Journal of Engineering 32(10), 1480-1484, 2019.
  • Niemi E., Fricke W., Maddox S. J., The structural hot-spot stress approach to fatigue analysis. In Structural Hot-Spot Stress Approach to Fatigue Analysis of Welded Components (pp. 5-12). Springer, 2018.
  • Schroepfer D., Kromm A., Kannengiesser T., Improving welding stresses by filler metal and heat control selection in component-related butt joints of high-strength steel. Welding in the World 59(3), 455-464, 2015.
  • Shin W., Chang K.-H., Muzaffer S., Fatigue analysis of cruciform welded joint with weld penetration defects. Engineering Failure Analysis 120, 105111, 2021.
  • Yamamoto N., Sugimoto T., Ishibashi, K., Tanaka, S., A study on the type-b hot spot stress. Welding in the World 64(11), 1833-1842, 2020.
There are 15 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Articles
Authors

Osman Bahadır Özden 0000-0003-1231-2936

Barış Gökçe 0000-0001-6141-7625

Abdullah Erdemir 0000-0002-7267-3111

Early Pub Date June 23, 2023
Publication Date June 26, 2023
Submission Date May 13, 2022
Published in Issue Year 2023

Cite

APA Özden, O. B., Gökçe, B., & Erdemir, A. (2023). Comparison of Welded Joint Stress with Experimental and Finite Element Method Using of Hotspot Method. Journal of Materials and Mechatronics: A, 4(1), 11-22. https://doi.org/10.55546/jmm.1116198
AMA Özden OB, Gökçe B, Erdemir A. Comparison of Welded Joint Stress with Experimental and Finite Element Method Using of Hotspot Method. J. Mater. Mechat. A. June 2023;4(1):11-22. doi:10.55546/jmm.1116198
Chicago Özden, Osman Bahadır, Barış Gökçe, and Abdullah Erdemir. “Comparison of Welded Joint Stress With Experimental and Finite Element Method Using of Hotspot Method”. Journal of Materials and Mechatronics: A 4, no. 1 (June 2023): 11-22. https://doi.org/10.55546/jmm.1116198.
EndNote Özden OB, Gökçe B, Erdemir A (June 1, 2023) Comparison of Welded Joint Stress with Experimental and Finite Element Method Using of Hotspot Method. Journal of Materials and Mechatronics: A 4 1 11–22.
IEEE O. B. Özden, B. Gökçe, and A. Erdemir, “Comparison of Welded Joint Stress with Experimental and Finite Element Method Using of Hotspot Method”, J. Mater. Mechat. A, vol. 4, no. 1, pp. 11–22, 2023, doi: 10.55546/jmm.1116198.
ISNAD Özden, Osman Bahadır et al. “Comparison of Welded Joint Stress With Experimental and Finite Element Method Using of Hotspot Method”. Journal of Materials and Mechatronics: A 4/1 (June 2023), 11-22. https://doi.org/10.55546/jmm.1116198.
JAMA Özden OB, Gökçe B, Erdemir A. Comparison of Welded Joint Stress with Experimental and Finite Element Method Using of Hotspot Method. J. Mater. Mechat. A. 2023;4:11–22.
MLA Özden, Osman Bahadır et al. “Comparison of Welded Joint Stress With Experimental and Finite Element Method Using of Hotspot Method”. Journal of Materials and Mechatronics: A, vol. 4, no. 1, 2023, pp. 11-22, doi:10.55546/jmm.1116198.
Vancouver Özden OB, Gökçe B, Erdemir A. Comparison of Welded Joint Stress with Experimental and Finite Element Method Using of Hotspot Method. J. Mater. Mechat. A. 2023;4(1):11-22.