Research Article
BibTex RIS Cite

Toz Metalurjisi Yöntemiyle Üretilen Fe Esaslı Fe-Ni-Cu Elmas Kesici Takımında Co’ın Etkisi

Year 2022, , 194 - 205, 18.12.2022
https://doi.org/10.55546/jmm.1131636

Abstract

Bu çalışmada toz metalürjisi (TM) tekniğiyle Fe esaslı Fe-Ni-Cu matrisine ağırlıkça farklı oranlarda (%10-20-30) kobalt (Co) ilave edilerek üretilen numunelerin mikroyapı ve bazı mekanik özellikleri incelendi. Sinterleme; 920 ºC’ de, 35 MPa basınç altında, 4 dk süreyle argon gazı atmosferinde yapıldı. Numunelerin mikroyapısal karakterizasyonu X-ışınları analizi (XRD), taramalı elektron mikroskobu (SEM), enerji dağılım spektrometresi (EDS) ile incelendi. Yoğunluk ölçümleri yapılan numuneler, sertlik ve üç noktalı eğme deneylerine tabi tutuldu. Sonuç olarak; takviye oranının artması ile porozitede azalma meydana geldi. En yüksek sertlik ve yoğunluk değerinin %20 Co ilaveli numunede olduğu görüldü. Co oranı ilavesiyle başlangıçta eğme gerilmesi ve yüzde uzamanın arttığı ve artan Co oranıyla birlikte eğme gerilmesi ve yüzde uzamanın azaldığı gözlendi.

References

  • Aronsson B., On the origins and early growth of stainless steel: A survey with emphasis on the development in Sweden. Outokumpu Stainless research foundation, 2010.
  • Kulaksız S., Doğaltaş (Mermer) Maden İşletmeciliği ve İşleme Teknolojileri. TMMOB Maden Mühendisleri Odası Yayınları, Ankara, No: 126, 624, 2007.
  • Burgess R. R., Man-made diamond for stone processing, Proc. 1st Technical Symposium, Bucharest, Romania, October 5-6, 1978.
  • Thakur U. N., The role of metal powders in manufacturing diamond tools. Proc. Superabrasives'85, Chicago, Illinois, USAS April 22-25, MR85-307, 1985.
  • Dwan J. D., HP/HT manufacturing of diamond, www.nantech.ie., 1998.
  • Hamar-Thibault S., Allibert C. H., Tillman W., Phase constitution of Cu77Sn8Ti14Zr1 as a binder for diamond tools, Proc. International Workshop on Diamond Tool Production, Turin, Italy, November 8-10, 1999, pp: 57-64.
  • Gasik M. M., Kervinen Po., Kaskiala M., Graf P., In situ sintering studies of cobalt powders for diamond tools, Prac, International Workshop on Diamond Tool Production, Turin, Italy, November 8-10, 1999, pp: 107-112.
  • Cram A. S. D., Hot isostatic pressing, Proc. Seminar on PM Diamond Tools, Lausanne, Switzerland, November 2-3. 1995.
  • Ojeda R. G., del Villar M., Muro P., Iturriza L., Castro F., Densification of diamond tools with Co, Ni and Fe based metallic binders, Proc. PM World Congress & Exhibition, Granada, Spain, 1998, pp: 481-486.
  • Samvelion R.V., Manoukion N.V., Extrusion for diamond tool production, Proc. Seminar on PM Diamond Tools, Lausanne, Switzerland, November 2-3, 1995.
  • Grüneis H. T., Sintering and brazing all in one, Industrial Diamond Review, No. 25, 45-47, 1998.
  • Schmid H. G., Diamond tool production using the DIAPLATE process. Proc. Seminar on PM Diamond Tools, Lausanne, Switzerland, November 2-3, 1995.
  • Fiechter A., Schneiden und Schweissen mit gepulsten Nd:YAG Laser, Proc. Seminar on PM Diamond Tools, Lausanne, Switzerland, November 2-3, 1995.
  • Fayed M. E., Otten L., Handbook of Powder Science and Technology. New York: Chapman & Hall,1997.
  • German R., Powder Metallurgy Science. New Jersey: Princeton, 1994.
  • German R., Toz metalurjisi ve Parçacıklı Malzeme İşlemleri. Ankara: TTMD Yayınları, 2007.
  • Chang I., Zhao Y., Advances in Powder Metallurgy: Properties, Processing and Applications. Woodhead Publishing, 2013.
  • Froes F. H., Eylon D., Eichelman G. E., Burte H. M., Developments in titanium powder metallurgy. JOM, 32(2), 47-54, 1980.
  • Qian M., Froes F. H., Titanium powder metallurgy: science, technology and applications. Butterworth-Heinemann, 2015.
  • Konstanty J., Sintered diamond tools the past, present and future. Archives of Metallurgy and Materials 66(2), 593-599, 2021.
  • Konstanty J., Tyrala D., Easily sinterable low alloy steel powders for P/M diamond tools. Metals, 11(8), 1204, 2021.
  • Oishi M., Prospects for cobalt demand. Cobalt News 5 January 11-14, 1979.
  • Güneş Ç., Ni Esaslı Katkı Malzemelerinin Matris Özelliklerine Etkisinin Araştırılması, Munzur Üniversitesi Lisansüstü Eğitim Enstitüsü, Yüksek Lisans Tezi (Basılmış), 2022.
  • Karaduman O., Structural and thermodynamical study of Cu-Zn-Al shape memory alloys with new compositions produced by hot isostatic press (HIP). In AIP Conference Proceedings, 2178(1), 30-40, 2019.
  • Nguyen V. M., Spark plasma sintering of cobalt powders in conjunction with high energy mechanical treatment and nanomodification. Processes, 8(5), 627, 2020.
  • Tyson W. R., Surface energies of solid metals. Canadian Metallurgical Quarterly 14(4), 307-314. 1975.
  • Uhlmann E., Polte M., Bolz R., Börnstein J., Fundamental research of applying tungsten carbide-cobalt as tool electrode material for sinking EDM. Procedia CIRP, 95, 466-470. 2020.
  • Jamrozek J. B., Processing and characterization of Fe-Cu-Ni sinters prepared by ball milling and hot pressing. Arch. Metall Mater, 65(3),1157-1161, 2020.
  • Li M., Fabrication of Fe-based diamond composites by pressureless infiltration. Materials 9(12), 1006, 2016.
  • Ghosh B., Defect induced room temperature ferromagnetism in single crystal, polycrystal, and nanorod ZnO: A comparative study. Journal of Applied Physics 123(16), 161507, 2018.
  • Çelik E., Elmaslı kesici takımlarda alternatif bağlayıcılar, Fırat Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi (Basılmış), 2009.

The Effect of Co on Fe-Based Fe-Ni-Cu Diamond Cutting Tool Produced by Powder Metallurgy Method

Year 2022, , 194 - 205, 18.12.2022
https://doi.org/10.55546/jmm.1131636

Abstract

In this study, microstructure and some mechanical properties of the samples were investigated produced by adding different weight (10-20-30%) cobalt (Co) to Fe-based Fe-Ni-Cu matrix by powder metallurgy (TM) technique. Sintering; It was carried out at 920 ºC, under 35 MPa pressure, for 4 minutes in an argon gas atmosphere. Microstructural characterization of the samples was examined by X-ray analysis (XRD), scanning electron microscope (SEM), and energy distribution spectrometry (EDS). Density measurements were made and the samples were subjected to hardness and three-point bending tests. As a result; The porosity decreased with the increase in the reinforcement ratio. It was observed that the highest hardness and density value was in the sample with 20% Co added. It was observed that the bending stress and percent elongation increased with the addition of Co ratio and the bending stress and percent elongation decreased with increasing Co ratio.

References

  • Aronsson B., On the origins and early growth of stainless steel: A survey with emphasis on the development in Sweden. Outokumpu Stainless research foundation, 2010.
  • Kulaksız S., Doğaltaş (Mermer) Maden İşletmeciliği ve İşleme Teknolojileri. TMMOB Maden Mühendisleri Odası Yayınları, Ankara, No: 126, 624, 2007.
  • Burgess R. R., Man-made diamond for stone processing, Proc. 1st Technical Symposium, Bucharest, Romania, October 5-6, 1978.
  • Thakur U. N., The role of metal powders in manufacturing diamond tools. Proc. Superabrasives'85, Chicago, Illinois, USAS April 22-25, MR85-307, 1985.
  • Dwan J. D., HP/HT manufacturing of diamond, www.nantech.ie., 1998.
  • Hamar-Thibault S., Allibert C. H., Tillman W., Phase constitution of Cu77Sn8Ti14Zr1 as a binder for diamond tools, Proc. International Workshop on Diamond Tool Production, Turin, Italy, November 8-10, 1999, pp: 57-64.
  • Gasik M. M., Kervinen Po., Kaskiala M., Graf P., In situ sintering studies of cobalt powders for diamond tools, Prac, International Workshop on Diamond Tool Production, Turin, Italy, November 8-10, 1999, pp: 107-112.
  • Cram A. S. D., Hot isostatic pressing, Proc. Seminar on PM Diamond Tools, Lausanne, Switzerland, November 2-3. 1995.
  • Ojeda R. G., del Villar M., Muro P., Iturriza L., Castro F., Densification of diamond tools with Co, Ni and Fe based metallic binders, Proc. PM World Congress & Exhibition, Granada, Spain, 1998, pp: 481-486.
  • Samvelion R.V., Manoukion N.V., Extrusion for diamond tool production, Proc. Seminar on PM Diamond Tools, Lausanne, Switzerland, November 2-3, 1995.
  • Grüneis H. T., Sintering and brazing all in one, Industrial Diamond Review, No. 25, 45-47, 1998.
  • Schmid H. G., Diamond tool production using the DIAPLATE process. Proc. Seminar on PM Diamond Tools, Lausanne, Switzerland, November 2-3, 1995.
  • Fiechter A., Schneiden und Schweissen mit gepulsten Nd:YAG Laser, Proc. Seminar on PM Diamond Tools, Lausanne, Switzerland, November 2-3, 1995.
  • Fayed M. E., Otten L., Handbook of Powder Science and Technology. New York: Chapman & Hall,1997.
  • German R., Powder Metallurgy Science. New Jersey: Princeton, 1994.
  • German R., Toz metalurjisi ve Parçacıklı Malzeme İşlemleri. Ankara: TTMD Yayınları, 2007.
  • Chang I., Zhao Y., Advances in Powder Metallurgy: Properties, Processing and Applications. Woodhead Publishing, 2013.
  • Froes F. H., Eylon D., Eichelman G. E., Burte H. M., Developments in titanium powder metallurgy. JOM, 32(2), 47-54, 1980.
  • Qian M., Froes F. H., Titanium powder metallurgy: science, technology and applications. Butterworth-Heinemann, 2015.
  • Konstanty J., Sintered diamond tools the past, present and future. Archives of Metallurgy and Materials 66(2), 593-599, 2021.
  • Konstanty J., Tyrala D., Easily sinterable low alloy steel powders for P/M diamond tools. Metals, 11(8), 1204, 2021.
  • Oishi M., Prospects for cobalt demand. Cobalt News 5 January 11-14, 1979.
  • Güneş Ç., Ni Esaslı Katkı Malzemelerinin Matris Özelliklerine Etkisinin Araştırılması, Munzur Üniversitesi Lisansüstü Eğitim Enstitüsü, Yüksek Lisans Tezi (Basılmış), 2022.
  • Karaduman O., Structural and thermodynamical study of Cu-Zn-Al shape memory alloys with new compositions produced by hot isostatic press (HIP). In AIP Conference Proceedings, 2178(1), 30-40, 2019.
  • Nguyen V. M., Spark plasma sintering of cobalt powders in conjunction with high energy mechanical treatment and nanomodification. Processes, 8(5), 627, 2020.
  • Tyson W. R., Surface energies of solid metals. Canadian Metallurgical Quarterly 14(4), 307-314. 1975.
  • Uhlmann E., Polte M., Bolz R., Börnstein J., Fundamental research of applying tungsten carbide-cobalt as tool electrode material for sinking EDM. Procedia CIRP, 95, 466-470. 2020.
  • Jamrozek J. B., Processing and characterization of Fe-Cu-Ni sinters prepared by ball milling and hot pressing. Arch. Metall Mater, 65(3),1157-1161, 2020.
  • Li M., Fabrication of Fe-based diamond composites by pressureless infiltration. Materials 9(12), 1006, 2016.
  • Ghosh B., Defect induced room temperature ferromagnetism in single crystal, polycrystal, and nanorod ZnO: A comparative study. Journal of Applied Physics 123(16), 161507, 2018.
  • Çelik E., Elmaslı kesici takımlarda alternatif bağlayıcılar, Fırat Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi (Basılmış), 2009.
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Articles
Authors

İlyas Somunkıran 0000-0003-2690-238X

Ertuğrul Çelik 0000-0001-7104-8288

Büşra Tunç 0000-0002-0090-5227

Çağdaş Güneş 0000-0001-7405-2063

Publication Date December 18, 2022
Submission Date June 17, 2022
Published in Issue Year 2022

Cite

APA Somunkıran, İ., Çelik, E., Tunç, B., Güneş, Ç. (2022). Toz Metalurjisi Yöntemiyle Üretilen Fe Esaslı Fe-Ni-Cu Elmas Kesici Takımında Co’ın Etkisi. Journal of Materials and Mechatronics: A, 3(2), 194-205. https://doi.org/10.55546/jmm.1131636
AMA Somunkıran İ, Çelik E, Tunç B, Güneş Ç. Toz Metalurjisi Yöntemiyle Üretilen Fe Esaslı Fe-Ni-Cu Elmas Kesici Takımında Co’ın Etkisi. J. Mater. Mechat. A. December 2022;3(2):194-205. doi:10.55546/jmm.1131636
Chicago Somunkıran, İlyas, Ertuğrul Çelik, Büşra Tunç, and Çağdaş Güneş. “Toz Metalurjisi Yöntemiyle Üretilen Fe Esaslı Fe-Ni-Cu Elmas Kesici Takımında Co’ın Etkisi”. Journal of Materials and Mechatronics: A 3, no. 2 (December 2022): 194-205. https://doi.org/10.55546/jmm.1131636.
EndNote Somunkıran İ, Çelik E, Tunç B, Güneş Ç (December 1, 2022) Toz Metalurjisi Yöntemiyle Üretilen Fe Esaslı Fe-Ni-Cu Elmas Kesici Takımında Co’ın Etkisi. Journal of Materials and Mechatronics: A 3 2 194–205.
IEEE İ. Somunkıran, E. Çelik, B. Tunç, and Ç. Güneş, “Toz Metalurjisi Yöntemiyle Üretilen Fe Esaslı Fe-Ni-Cu Elmas Kesici Takımında Co’ın Etkisi”, J. Mater. Mechat. A, vol. 3, no. 2, pp. 194–205, 2022, doi: 10.55546/jmm.1131636.
ISNAD Somunkıran, İlyas et al. “Toz Metalurjisi Yöntemiyle Üretilen Fe Esaslı Fe-Ni-Cu Elmas Kesici Takımında Co’ın Etkisi”. Journal of Materials and Mechatronics: A 3/2 (December 2022), 194-205. https://doi.org/10.55546/jmm.1131636.
JAMA Somunkıran İ, Çelik E, Tunç B, Güneş Ç. Toz Metalurjisi Yöntemiyle Üretilen Fe Esaslı Fe-Ni-Cu Elmas Kesici Takımında Co’ın Etkisi. J. Mater. Mechat. A. 2022;3:194–205.
MLA Somunkıran, İlyas et al. “Toz Metalurjisi Yöntemiyle Üretilen Fe Esaslı Fe-Ni-Cu Elmas Kesici Takımında Co’ın Etkisi”. Journal of Materials and Mechatronics: A, vol. 3, no. 2, 2022, pp. 194-05, doi:10.55546/jmm.1131636.
Vancouver Somunkıran İ, Çelik E, Tunç B, Güneş Ç. Toz Metalurjisi Yöntemiyle Üretilen Fe Esaslı Fe-Ni-Cu Elmas Kesici Takımında Co’ın Etkisi. J. Mater. Mechat. A. 2022;3(2):194-205.