Research Article
BibTex RIS Cite

Basınçlı Kalıplanmış Polimer Yatak Malzemelerinde Üretim Parametrelerinin Tribomekanik Özellikler Üzerinde Etkisinin İncelenmesi

Year 2023, , 38 - 49, 26.06.2023
https://doi.org/10.55546/jmm.1200868

Abstract

UHMWPE, üstün mekanik özelliklerinden dolayı yaygın olarak kullanılan bir polimerdir. Basınçlı kalıplama tekniği ile üretilen bu polimer malzemenin mikroyapısal, mekanik ve tribolojik özellikleri, üretim parametrelerine önemli ölçüde bağlıdır. Farklı kalıplama basınçları ve sıcaklıkları, malzemenin özelliklerini önemli ölçüde değiştirir. Bu çalışmada, basınçlı kalıplama tekniği kullanılarak üç farklı kalıplama basıncında (150 Bar, 250 Bar ve 350 Bar) ve üç farklı kalıplama sıcaklığında (120°C, 150°C ve 180°C) UHMWPE polimer numuneler üretilmiştir. Üretilen numunelerin mikroyapısal, mekanik ve tribolojik özellikleri testler altında incelenmiştir. Düşük sıcaklıkta kalıplama ile yapılan üretim parametrelerinin mukavemet artışına neden olduğu saptanmıştır. Öte yandan bu durum sünekliğin azalmasını sağlamıştır. Kalıplama sıcaklıkları arttıkça, aynı kalıplama basınç gruplarının tamamında sünekliğin artmaya eğim gösterdiği tespit edilmiştir. Benzer şekilde aynı sıcaklık grubunda kalıplama basıncının arttırılmasının malzeme mukavemetini arttırdığı görülmüştür. Aşınma direnci için optimum sıcaklık ve basınç olduğu belirlenmiştir. Sürtünme katsayısı (COF) davranışının üretim parametrelerinden çok fazla etkilenmediği gözlemlenmiştir. Aşınma direncinde optimum basınç ve sıcaklık koşullarının oluşmasının ana nedeni olarak polimer parçacıklarının aglomerasyonu olarak öngörülmektedir. Mikroyapıdaki partiküllerin aglomerasyonu nedeniyle taneler arası bağlanma azalmış ve dolaylı olarak aşınma direnci düşmüştür. Çalışma ile basınçlı kalıplama tekniği kullanılarak üretilen UHMWPE malzemesi için optimum kalıplama basıncı ve sıcaklığı belirlenmiştir.

References

  • Bahadur S., The Development Of Transfer Layers And Their Role In Polymer Tribology. Wear 245, 92-99, 2000.
  • Dearn K., Hoskins T., Petrov D., Reynolds S., Banks R., Applications Of Dry Film Lubricants For Polymer Gears. Wear, 298-299, 99-108, 2013.
  • Feyzullahoglu E., Saffak Z., The Tribological Behaviour Of Different Engineering Plastics Under Dry Friction Conditions. Materials & Design, 29(1), 205-211, 2008.
  • Ge S., Wang Q., Zhang D., Zhu H., Xiong D., Huang C., Huang X., Friction And Wear Behavior Of Nitrogen Ion Implanted UHMWPE Against ZrO2 Ceramic. Wear, 255, 1069-1075, 2003.
  • Ginzburg B., Tochilnikov D., Bakhareva V., Anisimov V., Kireenko O., Polymeric Materials For Water-Lubricated Plain Bearings. Russian Journal of Applied Chemistry, 79(5), 695-706, 2006.
  • Gürgen S., Wear Performance Of UHMWPE Based Composites İncluding Nano-Sized Fumed Silica. Composites Part B: Engineering, 173, 2019.
  • Hüseyin Ü., Yetgin S., ÇYMAPE Ve PA-6 Mühendislik Polimerlerinin Aşınma Ve Sürtünme Davranışlarının İncelenmesi. Türk Bilim Araştırma Vakfı Dergisi, 3(2), 145-152, 2010.
  • Jintang G., Tribochemical Effects In Formation Of Polymer Transfer Film. Wear, 245(1-2), 100-106, 2000.
  • Kanaga S., Bruck L., Sundararajan S., Wang J., Lin Z., Xu H., Li X., Friction And Wear Behavior Of Ultra-High Molecular Weight Polyethylene As A Function Of Polymer Crystallinity. Acta Biomater, 4(5), 1401-1410, 2008.
  • Klapperich C., Komvopoulos K., Pruitt L., Tribological Properties and Microstructure Evolution of Ultra-High Molecular Weight Polyethylene. Journal of Tribology, 121(2), 394-402, 2008.
  • Koç R., Mühendislik Plastiklerinin Aşınma Davranışlarının Deneysel İncelenmesi. Makine Teknolojileri Elektronik Dergisi, 8, (2), 27-40, 2011.
  • Kuma A., Bijwe J., Sharma S., Hard Metal Nitrides: Role İn Enhancing The Abrasive Wear Resistance Of UHMWPE. Wear, 378-379, 35-42, 2017.
  • Mourad I., Fouad H., Elleithy R., Impact Of Some Environmental Conditions On The Tensile, Creep-Recovery, Relaxation, Melting And Crystallinity Behaviour Of UHMWPE-GUR 410-Medical Grade. Materials & Design, 30(10), 4112-4119, 2009.
  • Oral E., Ghali W., Rowell L., Micheli R., Lozynsky J., Muratoglu K., A Surface Crosslinked UHMWPE Stabilized By Vitamin E With Low Wear And High Fatigue Strength. Biomaterials, 31(27), 7051-7060, 2010.
  • Panin V., Kornienko A., Nguensuan T., Ivanova R., Korchagin A., Shilko V., Pleskachevskii M., Wear Resistance Of Composites Based On Hybrid UHMWPE–PTFE Matrix: Mechanical And Tribotechnical Properties Of The Matrix. Journal of Friction and Wear, 36(3), 249-256, 2015.
  • Rymuza Z., Polymer Bearings. In Encyclopedia of Tribology, Springer, Boston, pp. 2557-2562.
  • Sarı A., Salman Ö., Experimental Investigation Of Tribological Properties Of Polymers Bearing Material. Afyon Kocatepe University Journal of Sciences and Engineering, 16(2), 446-453, 2016.
  • Tong J., Ma Y., Jiang, M., Effects Of The Wollastonite Fiber Modification On The Sliding Wear Behavior Of The UHMWPE Composites. Wear, 255(1-6), 734-741, 2016.
  • Uzuner F., Gediktaş M., Salınım Hareketi Yapan Radyal Kaymalı Plastik Yataklarda Sürtünme. İstanbul Teknik Üniversitesi Dergisi / D, 3(6), 2010.
  • Wang S., Ge S., The Mechanical Property And Tribological Behavior Of UHMWPE: Effect Of Molding Pressure. Wear, 263(7-12), 949-956, 2007.
  • Wu J., Buckley P., O’Connor J., Mechanical İntegrity Of Compression-Moulded Ultra-High Molecular Weight Polyethylene: Effects Of Varying Process Conditions. Biomaterials, 23(17), 3773-3783, 2002.
  • Xiong D., Ge S., Friction And Wear Properties Of UHMWPE/Al2O3 Ceramic Under Different Lubricating Conditions. Wear, 250(1-12), 242-245. 2001.

The Investigation of Production Parameters and Their Effect on the Tribomechanical Properties of the Compression Molded Polymeric Bearing Materials

Year 2023, , 38 - 49, 26.06.2023
https://doi.org/10.55546/jmm.1200868

Abstract

UHMWPE (Ultra High Molecular Weight Polyethylene) is a widely used polymer due to its superior mechanical properties. The microstructural, mechanical, and tribological properties of this polymer material produced by the compression molding technique significantly depend on the production parameters. The different molding pressures and temperatures dramatically impact the properties of the material. In this study, UHMWPE polymer samples were produced at three different molding pressures (150 Bar, 250 Bar, and 350 Bar) and molding temperatures (120°C, 150°C, and 180°C) using the compression molding technique. The microstructural, mechanical, and tribological properties of the samples were examined. It is observed that low-temperature molding production parameters cause an increase in strength. On the other hand, this situation enables decreased ductility. It has been determined that as the molding temperatures increase, ductility increase in all the same molding pressure groups. Similarly, it was observed that increasing the molding pressure in the same temperature group increased the strength of the material. It has been determined that there is an optimum molding pressure and temperature for wear resistance. It has been observed that the coefficient of friction (COF) behavior is not much affected by the molding parameters. Agglomeration of polymer particles is envisaged as the main reason for forming optimum pressure and temperature conditions in wear resistance. Agglomerated particles in the microstructure reduce bonding strength and deteriorate wear resistance. The study determined the optimum molding pressure (250 Bar) and temperature (150°C) for the production of UHMWPE material by a compression molding technique.

References

  • Bahadur S., The Development Of Transfer Layers And Their Role In Polymer Tribology. Wear 245, 92-99, 2000.
  • Dearn K., Hoskins T., Petrov D., Reynolds S., Banks R., Applications Of Dry Film Lubricants For Polymer Gears. Wear, 298-299, 99-108, 2013.
  • Feyzullahoglu E., Saffak Z., The Tribological Behaviour Of Different Engineering Plastics Under Dry Friction Conditions. Materials & Design, 29(1), 205-211, 2008.
  • Ge S., Wang Q., Zhang D., Zhu H., Xiong D., Huang C., Huang X., Friction And Wear Behavior Of Nitrogen Ion Implanted UHMWPE Against ZrO2 Ceramic. Wear, 255, 1069-1075, 2003.
  • Ginzburg B., Tochilnikov D., Bakhareva V., Anisimov V., Kireenko O., Polymeric Materials For Water-Lubricated Plain Bearings. Russian Journal of Applied Chemistry, 79(5), 695-706, 2006.
  • Gürgen S., Wear Performance Of UHMWPE Based Composites İncluding Nano-Sized Fumed Silica. Composites Part B: Engineering, 173, 2019.
  • Hüseyin Ü., Yetgin S., ÇYMAPE Ve PA-6 Mühendislik Polimerlerinin Aşınma Ve Sürtünme Davranışlarının İncelenmesi. Türk Bilim Araştırma Vakfı Dergisi, 3(2), 145-152, 2010.
  • Jintang G., Tribochemical Effects In Formation Of Polymer Transfer Film. Wear, 245(1-2), 100-106, 2000.
  • Kanaga S., Bruck L., Sundararajan S., Wang J., Lin Z., Xu H., Li X., Friction And Wear Behavior Of Ultra-High Molecular Weight Polyethylene As A Function Of Polymer Crystallinity. Acta Biomater, 4(5), 1401-1410, 2008.
  • Klapperich C., Komvopoulos K., Pruitt L., Tribological Properties and Microstructure Evolution of Ultra-High Molecular Weight Polyethylene. Journal of Tribology, 121(2), 394-402, 2008.
  • Koç R., Mühendislik Plastiklerinin Aşınma Davranışlarının Deneysel İncelenmesi. Makine Teknolojileri Elektronik Dergisi, 8, (2), 27-40, 2011.
  • Kuma A., Bijwe J., Sharma S., Hard Metal Nitrides: Role İn Enhancing The Abrasive Wear Resistance Of UHMWPE. Wear, 378-379, 35-42, 2017.
  • Mourad I., Fouad H., Elleithy R., Impact Of Some Environmental Conditions On The Tensile, Creep-Recovery, Relaxation, Melting And Crystallinity Behaviour Of UHMWPE-GUR 410-Medical Grade. Materials & Design, 30(10), 4112-4119, 2009.
  • Oral E., Ghali W., Rowell L., Micheli R., Lozynsky J., Muratoglu K., A Surface Crosslinked UHMWPE Stabilized By Vitamin E With Low Wear And High Fatigue Strength. Biomaterials, 31(27), 7051-7060, 2010.
  • Panin V., Kornienko A., Nguensuan T., Ivanova R., Korchagin A., Shilko V., Pleskachevskii M., Wear Resistance Of Composites Based On Hybrid UHMWPE–PTFE Matrix: Mechanical And Tribotechnical Properties Of The Matrix. Journal of Friction and Wear, 36(3), 249-256, 2015.
  • Rymuza Z., Polymer Bearings. In Encyclopedia of Tribology, Springer, Boston, pp. 2557-2562.
  • Sarı A., Salman Ö., Experimental Investigation Of Tribological Properties Of Polymers Bearing Material. Afyon Kocatepe University Journal of Sciences and Engineering, 16(2), 446-453, 2016.
  • Tong J., Ma Y., Jiang, M., Effects Of The Wollastonite Fiber Modification On The Sliding Wear Behavior Of The UHMWPE Composites. Wear, 255(1-6), 734-741, 2016.
  • Uzuner F., Gediktaş M., Salınım Hareketi Yapan Radyal Kaymalı Plastik Yataklarda Sürtünme. İstanbul Teknik Üniversitesi Dergisi / D, 3(6), 2010.
  • Wang S., Ge S., The Mechanical Property And Tribological Behavior Of UHMWPE: Effect Of Molding Pressure. Wear, 263(7-12), 949-956, 2007.
  • Wu J., Buckley P., O’Connor J., Mechanical İntegrity Of Compression-Moulded Ultra-High Molecular Weight Polyethylene: Effects Of Varying Process Conditions. Biomaterials, 23(17), 3773-3783, 2002.
  • Xiong D., Ge S., Friction And Wear Properties Of UHMWPE/Al2O3 Ceramic Under Different Lubricating Conditions. Wear, 250(1-12), 242-245. 2001.
There are 22 citations in total.

Details

Primary Language English
Subjects Polymer Science and Technologies, Mechanical Engineering
Journal Section Research Articles
Authors

Esad Kaya 0000-0002-7332-6154

Early Pub Date June 23, 2023
Publication Date June 26, 2023
Submission Date November 8, 2022
Published in Issue Year 2023

Cite

APA Kaya, E. (2023). The Investigation of Production Parameters and Their Effect on the Tribomechanical Properties of the Compression Molded Polymeric Bearing Materials. Journal of Materials and Mechatronics: A, 4(1), 38-49. https://doi.org/10.55546/jmm.1200868
AMA Kaya E. The Investigation of Production Parameters and Their Effect on the Tribomechanical Properties of the Compression Molded Polymeric Bearing Materials. J. Mater. Mechat. A. June 2023;4(1):38-49. doi:10.55546/jmm.1200868
Chicago Kaya, Esad. “The Investigation of Production Parameters and Their Effect on the Tribomechanical Properties of the Compression Molded Polymeric Bearing Materials”. Journal of Materials and Mechatronics: A 4, no. 1 (June 2023): 38-49. https://doi.org/10.55546/jmm.1200868.
EndNote Kaya E (June 1, 2023) The Investigation of Production Parameters and Their Effect on the Tribomechanical Properties of the Compression Molded Polymeric Bearing Materials. Journal of Materials and Mechatronics: A 4 1 38–49.
IEEE E. Kaya, “The Investigation of Production Parameters and Their Effect on the Tribomechanical Properties of the Compression Molded Polymeric Bearing Materials”, J. Mater. Mechat. A, vol. 4, no. 1, pp. 38–49, 2023, doi: 10.55546/jmm.1200868.
ISNAD Kaya, Esad. “The Investigation of Production Parameters and Their Effect on the Tribomechanical Properties of the Compression Molded Polymeric Bearing Materials”. Journal of Materials and Mechatronics: A 4/1 (June 2023), 38-49. https://doi.org/10.55546/jmm.1200868.
JAMA Kaya E. The Investigation of Production Parameters and Their Effect on the Tribomechanical Properties of the Compression Molded Polymeric Bearing Materials. J. Mater. Mechat. A. 2023;4:38–49.
MLA Kaya, Esad. “The Investigation of Production Parameters and Their Effect on the Tribomechanical Properties of the Compression Molded Polymeric Bearing Materials”. Journal of Materials and Mechatronics: A, vol. 4, no. 1, 2023, pp. 38-49, doi:10.55546/jmm.1200868.
Vancouver Kaya E. The Investigation of Production Parameters and Their Effect on the Tribomechanical Properties of the Compression Molded Polymeric Bearing Materials. J. Mater. Mechat. A. 2023;4(1):38-49.