Research Article
BibTex RIS Cite

Evaluation of Mechanical Properties of PLA Auxetic Structures Produced by Additive Manufacturing

Year 2023, , 384 - 396, 26.12.2023
https://doi.org/10.55546/jmm.1309858

Abstract

FDM (fused deposition modeling) is one of the most commonly used technologies in additive manufacturing. This technology is used to additively manufacture components from various polymer materials, mostly PLA (polylactic acid), etc. PLA filament is a widely used polymer for 3D printing due to its biodegradability, biocompatibility, and processability. In the study, PLA raw material and cellular auxetic structures were used in the design. Auxetic designs are called metamaterials, they are structures with advanced properties and can be obtained with various geometries. The auxetic designs used in the study are missing rib, re-entrant honeycomb and chiral. One of the biggest advantages of auxetic cellular materials is that it is not bulk material. Having a skeletal structure provides high strength at low density. Today, based on this mechanism, designs that can be used in engineering applications are being studied. It has an important place especially in the medical field, as well as in the areas where high precision and specific products are designed and produced. Considering its relationship with 3D printing technology, 3D printing enables the fabrication of auxetic structures for complex and personal designs. The novelty of auxetic structures comes from their topological features, which display counterintuitive response to the applied load. For the purpose of compare the properties of mechanical tensile, compression, surface roughness tests were applied. It is concluded that the presence of chiral structures improves mechanical performance. The chiral auxetic sample exhibited a maximum stress of 6.68 MPa, the missing-rib auxetic sample displayed a maximum stress of 2.26 MPa, and the re-entrant auxetic sample demonstrated a maximum stress of 3.68 MPa. These results obtained from the tests align well with the range reported in the literature, which falls between 1-12 MPa. The surface roughness of the all-auxtetic structure, perpendicular to the printing direction was higher than the measurements taken parallel to the printing direction.

References

  • Alderson, A.; Alderson, K.L. Auxetic materials. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 221, 565–575, 2007.
  • Alderson, K.L.; Fitzgerald, A.; Evans, K.E. The strain dependent indentation resilience of auxetic microporous polyethylene. J. Mater. Sci., 35, 4039–4047, 2000.
  • Anurag, C. K. Anvesh, and S. Katam, “Auxetic materials,” Int. J. Research in Appl. Sci. Eng. Technol., 3, (4), 1176–1183, 2015.
  • Baughman, R.H.; Shacklette, J.M.; Zakhidov, A.A.; Stafström, S., Negative poisson’s ratios as a common feature of cubic metals. Nature 1998, 392, 362–365. [CrossRef]
  • Çam G., Prospects of producing aluminum parts by wire arc additive manufacturing (WAAM), Materials Today: Proceedings, 62 (1), 77-85, 2022.
  • Carneiro, V.H.; Meireles, J.; Puga, H. Auxetic materials—A review. Mater. Sci. 31, 561–571, 2013.
  • Carton, M.A.; Ganter, M. Fast and simple printing of graded auxetic structures. In Proceedings of the 30th International Solid Freeform Fabrication–An Additive Manufacturing Conference SFF, University of Texas: Austin, TX, USA; pp. 2270–2279, 2019.
  • Çelebi, A., Experimental and statistical investigation of the bending and surface roughness properties on three-dimensional printing parts. Journal of Testing and Evaluation 50, no. 4, 2069–2082, 2022.
  • Ceritbinmez F., Günen A., Gürol U., Çam G., A comparative study on drillability of Inconel 625 alloy fabricated by wire arc additive manufacturing, Journal of Manufacturing Processes, 89, 150-169, 2023.
  • Chan, N.; Evans, K.E. Indentation resilience of conventional and auxetic foams. J. Cell. Plast. 34, 231–260, 1998.
  • Choi, J.B.; Lakes, R.S. Fracture toughness of re-entrant foam materials with a negative Poisson’s ratio: Experiment and analysis. Int. J. Fract. 80, 73–83, 1996.
  • Dirrenberger, J.; Forest, S.; Jeulin, D. Elastoplasticity of auxetic materials. Comput. Mater. Sci. 64, 57–61, 2012.
  • Duncan, O.; Foster, L.; Senior, T.; Allen, T.; Alderson, A. A comparison of novel and conventional fabrication methods for auxetic foams for sports safety applications. Procedia Eng. 147, 384–389, 2016.
  • Ergene, B., Yalçın B., Eriyik yığma modelleme (EYM) ile üretilen çeşitli hücresel yapıların mekanikperformanslarının incelenmesi, Journal of the Faculty of Engineering and Architecture of Gazi University 38:1, 201-217, 2023.
  • Evans K.E., Nkansah M.A., Hutchison I.J., Rogers S.C., Molecular Network Design, Nature 353, 124, 1991.
  • Günen A., Gürol U., Koçak M., Çam G., A new approach to improve some properties of wire arc additively manufactured stainless steel components: Simultaneous homogenization and boriding, Surface & Coating Technology, 460, 129395, 2023b.
  • Günen A., Gürol U., Koçak M., Çam G., Investigation into the influence of boronizing on the wear behavior of additively manufactured Inconel 625 alloy at elevated temperature, Progress in Additive Manufacturing, 2023a.
  • Guo, Y.; Zhang, J.; Chen, L.; Du, B.; Liu, H.; Chen, L.; Li, W.; Liu, Y. Deformation behaviors and energy absorption of auxetic lattice cylindrical structures under axial crushing load. Aerosp. Sci. Technol. 98, 105662, 2020.
  • Hui Chen Luo, Xin Ren, Yi Zhang, Xiang Yu Zhang, Xue Gang Zhang, Chen Luo, Xian Cheng, Yi Min Xie, Mechanical properties of foam-filled hexagonal and re-entrant honeycombs under uniaxial compression, Composite Structures, Volume 280, 2022.
  • Joseph, A.; Mahesh, V.; Harursampath, D. On the application of additive manufacturing methods for auxetic structures: A review. Adv. Manuf. 9, 342–368, 2021.
  • Lakes R.S., Foam structures with a negative Poisson's ratio” Science, 235:1038–1040, 1997.
  • Lakes, R.S.; Elms, K. Indentability of conventional and negative poisson’s ratio foams. J. Compos. Mater. 27, 1193–1202, 1993.
  • Li, T.; Liu, F.; Wang, L. Enhancing indentation and impact resistance in auxetic composite materials. Compos. Part B Eng. 198, 108229, 2020.
  • Liu, Y.; Hu, H. A review on auxetic structures and polymeric materials. Sci. Res. Essay, 5, 1052–1063, 2010.
  • Miller, W.; Smith, C.W.; Scarpa, F.; Evans, K.E. Flatwise buckling optimization of hexachiral and tetrachiral honeycombs. Compos. Sci. Technol. 70, 1049–1056, 2010.
  • Mir, M.; Ali, M.N.; Sami, J.; Ansari, U. Review of mechanics and applications of auxetic structures. Adv. Mater. Sci. Eng. 1–17, 2014.
  • Mocerino, D.; Ricciardi,M.R.; Antonucci, V.; Papa, I. Fused deposition modelling of polymeric auxetic structures: A Review. Polymers. 15, 1008, 2023.
  • Spadoni, A.; Ruzzene, M.; Scarpa, F. Global and local linear buckling behavior of a chiral cellular structure. Phys. Status Solidi. 242, 695–709, 2005.
  • Taşdemir M., Experimental and numerical investigation of mechanical properties of additively manufactured auxetic structures, Master Thesıs of Mıddle East Technıcal Unıversıty, Turkey, 2022.
  • Wang, Y.-C.; Lakes, R.; Butenhoff, A. Influence of cell size on re-entrant transformation of negative poisson’s ratio reticulated polyurethane foams. Cell. Polym. 20, 373–385, 2001.
  • Yang, S.; Chalivendra, V.B.; Kim, Y.K. Fracture and impact characterization of novel auxetic Kevlar®/Epoxy laminated composites. Compos. Struct. 168, 120–129, 2017.

Eklemeli İmalat Yöntemiyle Üretilen PLA Öksetik Tasarımların Mekanik Özelliklerinin İncelenmesi

Year 2023, , 384 - 396, 26.12.2023
https://doi.org/10.55546/jmm.1309858

Abstract

FDM (eriyik biriktirme modelleme), eklemeli imalatta en yaygın kullanılan teknolojilerden biridir. Bu teknolojiyle genellikle PLA (polilaktik asit) gibi çeşitli polimer malzemeler kullanılır. PLA filament, biyolojik olarak parçalanabilirlik, biyolojik uyumluluk ve işlenebilirlik gibi özellikleri nedeniyle 3D baskı için yaygın olarak kullanılan bir polimerdir. Bu çalışmada, PLA hammadde ve hücresel öksetik yapıları tasarımda kullanılmıştır. Öksetik tasarımları metamalzemeler olarak adlandırılır ve ileri özelliklere sahip ve çeşitli geometrilerle elde edilebilen yapılar olarak bilinir. Çalışmada kullanılan öksetik tasarımları missing-rib, re-entrant ve kiral şeklindedir. Öksetik hücresel malzemelerin en büyük avantajlarından biri, hacimli bir malzeme olmamasıdır. İskelet yapısı yüksek mukavemeti düşük yoğunlukta sağlar. Bugün, bu mekanizmaya dayanan mühendislik uygulamalarında kullanılabilecek tasarımlar üzerinde çalışmalar yapılmaktadır. Özellikle tıp alanında ve yüksek hassasiyet gerektiren özel ürünlerin tasarlandığı ve üretildiği alanlarda önemli bir yere sahiptir. 3D baskı teknolojisi ile olan ilişkisini düşündüğümüzde, 3D baskı karmaşık ve kişisel tasarımlar için öksetik yapıların imalatını mümkün kılar. Üretilen parçaların mekanik ve kırılma yüzeylerinin özelliklerini karşılaştırmak amacıyla çekme, basma ve yüzey pürüzlülük testleri uygulanmıştır.

References

  • Alderson, A.; Alderson, K.L. Auxetic materials. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 221, 565–575, 2007.
  • Alderson, K.L.; Fitzgerald, A.; Evans, K.E. The strain dependent indentation resilience of auxetic microporous polyethylene. J. Mater. Sci., 35, 4039–4047, 2000.
  • Anurag, C. K. Anvesh, and S. Katam, “Auxetic materials,” Int. J. Research in Appl. Sci. Eng. Technol., 3, (4), 1176–1183, 2015.
  • Baughman, R.H.; Shacklette, J.M.; Zakhidov, A.A.; Stafström, S., Negative poisson’s ratios as a common feature of cubic metals. Nature 1998, 392, 362–365. [CrossRef]
  • Çam G., Prospects of producing aluminum parts by wire arc additive manufacturing (WAAM), Materials Today: Proceedings, 62 (1), 77-85, 2022.
  • Carneiro, V.H.; Meireles, J.; Puga, H. Auxetic materials—A review. Mater. Sci. 31, 561–571, 2013.
  • Carton, M.A.; Ganter, M. Fast and simple printing of graded auxetic structures. In Proceedings of the 30th International Solid Freeform Fabrication–An Additive Manufacturing Conference SFF, University of Texas: Austin, TX, USA; pp. 2270–2279, 2019.
  • Çelebi, A., Experimental and statistical investigation of the bending and surface roughness properties on three-dimensional printing parts. Journal of Testing and Evaluation 50, no. 4, 2069–2082, 2022.
  • Ceritbinmez F., Günen A., Gürol U., Çam G., A comparative study on drillability of Inconel 625 alloy fabricated by wire arc additive manufacturing, Journal of Manufacturing Processes, 89, 150-169, 2023.
  • Chan, N.; Evans, K.E. Indentation resilience of conventional and auxetic foams. J. Cell. Plast. 34, 231–260, 1998.
  • Choi, J.B.; Lakes, R.S. Fracture toughness of re-entrant foam materials with a negative Poisson’s ratio: Experiment and analysis. Int. J. Fract. 80, 73–83, 1996.
  • Dirrenberger, J.; Forest, S.; Jeulin, D. Elastoplasticity of auxetic materials. Comput. Mater. Sci. 64, 57–61, 2012.
  • Duncan, O.; Foster, L.; Senior, T.; Allen, T.; Alderson, A. A comparison of novel and conventional fabrication methods for auxetic foams for sports safety applications. Procedia Eng. 147, 384–389, 2016.
  • Ergene, B., Yalçın B., Eriyik yığma modelleme (EYM) ile üretilen çeşitli hücresel yapıların mekanikperformanslarının incelenmesi, Journal of the Faculty of Engineering and Architecture of Gazi University 38:1, 201-217, 2023.
  • Evans K.E., Nkansah M.A., Hutchison I.J., Rogers S.C., Molecular Network Design, Nature 353, 124, 1991.
  • Günen A., Gürol U., Koçak M., Çam G., A new approach to improve some properties of wire arc additively manufactured stainless steel components: Simultaneous homogenization and boriding, Surface & Coating Technology, 460, 129395, 2023b.
  • Günen A., Gürol U., Koçak M., Çam G., Investigation into the influence of boronizing on the wear behavior of additively manufactured Inconel 625 alloy at elevated temperature, Progress in Additive Manufacturing, 2023a.
  • Guo, Y.; Zhang, J.; Chen, L.; Du, B.; Liu, H.; Chen, L.; Li, W.; Liu, Y. Deformation behaviors and energy absorption of auxetic lattice cylindrical structures under axial crushing load. Aerosp. Sci. Technol. 98, 105662, 2020.
  • Hui Chen Luo, Xin Ren, Yi Zhang, Xiang Yu Zhang, Xue Gang Zhang, Chen Luo, Xian Cheng, Yi Min Xie, Mechanical properties of foam-filled hexagonal and re-entrant honeycombs under uniaxial compression, Composite Structures, Volume 280, 2022.
  • Joseph, A.; Mahesh, V.; Harursampath, D. On the application of additive manufacturing methods for auxetic structures: A review. Adv. Manuf. 9, 342–368, 2021.
  • Lakes R.S., Foam structures with a negative Poisson's ratio” Science, 235:1038–1040, 1997.
  • Lakes, R.S.; Elms, K. Indentability of conventional and negative poisson’s ratio foams. J. Compos. Mater. 27, 1193–1202, 1993.
  • Li, T.; Liu, F.; Wang, L. Enhancing indentation and impact resistance in auxetic composite materials. Compos. Part B Eng. 198, 108229, 2020.
  • Liu, Y.; Hu, H. A review on auxetic structures and polymeric materials. Sci. Res. Essay, 5, 1052–1063, 2010.
  • Miller, W.; Smith, C.W.; Scarpa, F.; Evans, K.E. Flatwise buckling optimization of hexachiral and tetrachiral honeycombs. Compos. Sci. Technol. 70, 1049–1056, 2010.
  • Mir, M.; Ali, M.N.; Sami, J.; Ansari, U. Review of mechanics and applications of auxetic structures. Adv. Mater. Sci. Eng. 1–17, 2014.
  • Mocerino, D.; Ricciardi,M.R.; Antonucci, V.; Papa, I. Fused deposition modelling of polymeric auxetic structures: A Review. Polymers. 15, 1008, 2023.
  • Spadoni, A.; Ruzzene, M.; Scarpa, F. Global and local linear buckling behavior of a chiral cellular structure. Phys. Status Solidi. 242, 695–709, 2005.
  • Taşdemir M., Experimental and numerical investigation of mechanical properties of additively manufactured auxetic structures, Master Thesıs of Mıddle East Technıcal Unıversıty, Turkey, 2022.
  • Wang, Y.-C.; Lakes, R.; Butenhoff, A. Influence of cell size on re-entrant transformation of negative poisson’s ratio reticulated polyurethane foams. Cell. Polym. 20, 373–385, 2001.
  • Yang, S.; Chalivendra, V.B.; Kim, Y.K. Fracture and impact characterization of novel auxetic Kevlar®/Epoxy laminated composites. Compos. Struct. 168, 120–129, 2017.
There are 31 citations in total.

Details

Primary Language English
Subjects Material Production Technologies
Journal Section Research Articles
Authors

Ahu Çelebi 0000-0003-0401-5384

Mustafa Mertcan İmanç 0009-0004-7999-2096

Early Pub Date December 25, 2023
Publication Date December 26, 2023
Submission Date June 5, 2023
Published in Issue Year 2023

Cite

APA Çelebi, A., & İmanç, M. M. (2023). Evaluation of Mechanical Properties of PLA Auxetic Structures Produced by Additive Manufacturing. Journal of Materials and Mechatronics: A, 4(2), 384-396. https://doi.org/10.55546/jmm.1309858
AMA Çelebi A, İmanç MM. Evaluation of Mechanical Properties of PLA Auxetic Structures Produced by Additive Manufacturing. J. Mater. Mechat. A. December 2023;4(2):384-396. doi:10.55546/jmm.1309858
Chicago Çelebi, Ahu, and Mustafa Mertcan İmanç. “Evaluation of Mechanical Properties of PLA Auxetic Structures Produced by Additive Manufacturing”. Journal of Materials and Mechatronics: A 4, no. 2 (December 2023): 384-96. https://doi.org/10.55546/jmm.1309858.
EndNote Çelebi A, İmanç MM (December 1, 2023) Evaluation of Mechanical Properties of PLA Auxetic Structures Produced by Additive Manufacturing. Journal of Materials and Mechatronics: A 4 2 384–396.
IEEE A. Çelebi and M. M. İmanç, “Evaluation of Mechanical Properties of PLA Auxetic Structures Produced by Additive Manufacturing”, J. Mater. Mechat. A, vol. 4, no. 2, pp. 384–396, 2023, doi: 10.55546/jmm.1309858.
ISNAD Çelebi, Ahu - İmanç, Mustafa Mertcan. “Evaluation of Mechanical Properties of PLA Auxetic Structures Produced by Additive Manufacturing”. Journal of Materials and Mechatronics: A 4/2 (December 2023), 384-396. https://doi.org/10.55546/jmm.1309858.
JAMA Çelebi A, İmanç MM. Evaluation of Mechanical Properties of PLA Auxetic Structures Produced by Additive Manufacturing. J. Mater. Mechat. A. 2023;4:384–396.
MLA Çelebi, Ahu and Mustafa Mertcan İmanç. “Evaluation of Mechanical Properties of PLA Auxetic Structures Produced by Additive Manufacturing”. Journal of Materials and Mechatronics: A, vol. 4, no. 2, 2023, pp. 384-96, doi:10.55546/jmm.1309858.
Vancouver Çelebi A, İmanç MM. Evaluation of Mechanical Properties of PLA Auxetic Structures Produced by Additive Manufacturing. J. Mater. Mechat. A. 2023;4(2):384-96.