Investigation on Microstructural and Mechanical Properties of FeNiMnCrCoTi0.1 High Entropy Alloy with B Addition
Year 2024,
, 195 - 213, 26.06.2024
Mahmud Cemaleddin Yalcın
,
Şükrü Talaş
Abstract
High-entropy alloys (HEAs) are alloys with high potential for use in defense, aircraft, and aerospace industries due to their properties such as high strength, hardness, wear resistance, corrosion resistance, and ability to operate at high temperatures. Therefore, in this study, FeNiMnCrCoTi0.1BX (x values in molar ratio, x = 0-1) high entropy alloys were produced by arc melting technique under protective gas atmosphere using a reverse vacuum method. The microstructural properties of the produced HEAs were examined by scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX) analysis was also performed. The crystal lattice structure of the produced HEAs was determined by X-ray diffraction (XRD) analysis. Microhardness and compression tests were conducted to determine the mechanical properties of the produced HEAs. It is observed that the hardness of the FeNiMnCrCoTi0.1BX high-entropy alloy increases as the boron content increases. The highest microhardness obtained was 593.8 HV in the FeNiMnCrCoTi0.1B alloy. As the boron content increases, the yield stress has also increased in compression testing. The highest yield stress was determined to be 1329 MPa in the FeNiMnCrCoTi0.1B alloy.
Supporting Institution
Afyon Kocatepe University
Project Number
21.FEN.BİL.11
Thanks
This study was supported by Afyon Kocatepe University Scientific Research Projects Coordination Unit with Project number of "21.FEN.BİL.11".
References
- Algan Şimşek İ., Talaş S., Kurt, A., The evolution of phases in FeNiCoCrCuBx high entropy alloys produced through microwave sintering and vacuum arc melting. Revista de Metalurgia, 58(1), 2022.
- Algan Şimşek İ.B., Arık M.N., Talaş Ş., Kurt A., The effect of B addition on the microstructural and mechanical properties of FeNiCoCrCu high entropy alloys. Metallurgical and Materials Transactions A, 52, 1749-1758, 2021.
- Chen M.R., Lin S.J., Yeh J.W., Chen S.K., Huang Y.S., Tu C.P., Microstructure and properties of Al0. 5CoCrCuFeNiTix (x= 0–2.0) high-entropy alloys. Materials transactions, 47(5), 1395-1401, 2006.
Chuang M.H., Tsai M.H., Wang W.R., Lin S.J., Yeh J.W., Microstructure and wear behavior of AlxCo1. 5CrFeNi1. 5Tiy high-entropy alloys. Acta Materialia, 59(16), 6308-6317, 2011.
- Gao M.C., Miracle D.B., Maurice D., Yan X., Zhang Y., Hawk J.A. High-entropy functional materials. Journal of Materials Research, 33(19), 3138-3155, 2018.
- Gao M.C., Yeh J.W., Liaw P.K., Zhang Y., High-entropy alloys: fundamentals and applications. Springer. 2016.
- He J.Y., Liu W.H., Wang H., Wu Y., Liu X.J., Nieh T.G., Lu Z.P., Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. Acta Materialia, 62, 105-113, 2014.
- He J.Y., Wang H., Huang H.L., Xu X.D., Chen, M.W., Wu Y., Liu X.J., Nieh T.G., An K., Lu Z.P., A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Materialia, 102, 187-196, 2016.
- Huo W.Y., Shi H.F., Ren X., Zhang J.Y., Microstructure and Wear Behavior of CoCrFeMnNbNi High‐Entropy Alloy Coating by TIG Cladding. Advances in Materials Science and Engineering, 2015(1), 647351, 2015.
- İçin K., Investigation of phase transformation related magnetic properties of Ti addition to FeCoCuNiMn and FeCoCuNiAl high entropy alloys by vacuum arc melting. Materials Today Communications, 39, 108821, 2024.
- İçin K., Sünbül S.E., Yıldız A., Cantor Yüksek Entropili Alaşımına Mn Yerine Cu İkamesinin Yapısal ve Mekanik Özellikler Üzerindeki Etkisinin Araştırılması. Gazi University Journal of Science Part C: Design and Technology, 11(2), 379-387, 2023.
- Jain R., Rahul M.R., Jain S., Samal S., Kumar V., Phase evolution and mechanical behaviour of Co–Fe–Mn–Ni–Ti eutectic high entropy alloys. Transactions of the Indian Institute of Metals, 71, 2795-2799, 2018.
- Luan H.W., Shao Y., Li J.F., Mao W.L., Han Z.D., Shao C., Yao K.F., Phase stabilities of high entropy alloys. Scripta Materialia, 179, 40-44, 2020.
- Mehranpour M.S., Shahmir H., Derakhshandeh A., Nili-Ahmadabadi M., Significance of Ti addition on precipitation in CoCrFeNiMn high-entropy alloy. Journal of Alloys and Compounds, 888, 161530, 2021.
- Murty B.S., Yeh J.W., Ranganathan S., High-entropy alloys. Elsevier, 2014.
- Otto F., Dlouhý A., Pradeep K.G., Kuběnová M., Raabe D., Eggeler G., George E.P., Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures. Acta Materialia, 112, 40-52, 2016.
- Otto F., Dlouhý A., Somsen C., Bei H., Eggeler G., George E.P. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Materialia, 61(15), 5743-5755, 2013.
- Shahmir H., Mehranpour M.S., Shams S.A.A., Langdon T.G., Twenty years of the CoCrFeNiMn high-entropy alloy: Achieving exceptional mechanical properties through microstructure engineering. Journal of Materials Research and Technology, 23, 3362-3423, 2023.
- Shun T.T., Chang L.Y., Shiu M.H., Microstructures and mechanical properties of multiprincipal component CoCrFeNiTix alloys. Materials Science and Engineering: A, 556, 170-174, 2012.
- Tan C., Sun Q., Xiao L., Zhao, Y., Sun J., Slip transmission behavior across α/β interface and strength prediction with a modified rule of mixtures in TC21 titanium alloy. Journal of Alloys and Compounds, 724, 112-120, 2017.
- Tan C., Sun Q., Zhang G., Role of microstructure in plastic deformation and crack propagation behaviour of an α/β titanium alloy. Vacuum, 183, 109848, 2021.
- Xiaotao L., Wenbin L., Lijuan M., Jinling L., Jing L., Jianzhong C., Effect of boron on the microstructure, phase assemblage and wear properties of Al0. 5CoCrCuFeNi high-entropy alloy. Rare Metal Materials and Engineering, 45(9), 2201-2207, 2016.
- Yang X., Zhang Y., Prediction of high-entropy stabilized solid-solution in multi-component alloys. Materials Chemistry and Physics, 132(2-3), 233-238, 2012.
- Yeh J.W., Chen S.K., Lin S.J., Gan J.Y., Chin T.S., Shun T.T., Tsau C.H., Chang S.Y., Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced engineering materials, 6(5), 299-303, 2004.
- Yeh J.W., Recent progress in high entropy alloys. Annales De Chimie Science des Materiaux, 31(6), 633-648, 2006.
- Zhang W., Liaw P.K., Zhang Y., Science and technology in high-entropy alloys. Sci. China Mater, 61(1), 2-22, 2018.
- Zhang Y., Zuo T.T., Tang Z., Gao M.C., Dahmen K.A., Liaw P.K., Lu Z.P., Microstructures and properties of high-entropy alloys. Progress in materials science, 61, 1-93, 2014.
- Zhou Y.J., Zhang Y., Wang Y.L., Chen G.L., Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties. Applied physics letters, 90(18), 2007.
- Zhou Y.J., Zhang Y., Wang Y.L., Chen, G.L., Microstructure and compressive properties of multicomponent Alx (TiVCrMnFeCoNiCu) 100− x high-entropy alloys. Materials Science and Engineering: A, 454, 260-265, 2007.
FeNiMnCrCoTi0,1 Yüksek Entropili Alaşıma Yapılan B İlavesi ile Mikroyapı ve Mekanik Özelliklerin İncelenmesi
Year 2024,
, 195 - 213, 26.06.2024
Mahmud Cemaleddin Yalcın
,
Şükrü Talaş
Abstract
Yüksek entropi alaşımlar (HEA), yüksek mukavemet, sertlik, aşınma direnci, korozyon direnci ve yüksek sıcaklıklarda çalışma yeteneği gibi özelliklere sahip olmaları nedeniyle savunma, havacılık ve uzay endüstrilerinde kullanım potansiyeline sahip alaşımlardır. Bu nedenle, bu çalışmada, koruyucu gaz atmosferi altında ark eritme tekniği ile ters vakum sistemi kullanılarak FeNiMnCrCoTi0.1BX (mol oranındaki x değerleri, x= 0-1) yüksek entropi alaşımları üretildi. Üretilen HEA'ların mikroyapısal özellikleri taramalı elektron mikroskopu (SEM) ile incelendi ve enerji dağılımlı X-ışını spektroskopisi (EDX) analizi yapıldı. Üretilen HEA'ların kristal yapıları X-ışını kırınımı (XRD) analizi ile belirlendi. Üretilen HEA'ların mekanik özelliklerini belirlemek için mikrosertlik ve basınç testleri yapıldı. FeNiMnCrCoTi0.1BX yüksek entropi alaşımının sertliğinin bor içeriği arttıkça arttığı gözlemlenmiştir. Elde edilen en yüksek mikrosertlik, FeNiMnCrCoTi0.1B alaşımında 593.8 HV olarak belirlenmiştir. Basma testinde de bor miktarı arttıkça akmak gerilmesi artmıştır. En yüksek akma gerilmesi FeNiMnCrCoTi0,1B alaşımında 1329 MPa olarak belirlenmiştir.
Supporting Institution
Afyon Kocatepe Üniversitesi
Project Number
21.FEN.BİL.11
Thanks
Bu çalışma, Afyon Kocatepe Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından “21.FEN.BİL.11” kodlu proje ile desteklenmiştir.
References
- Algan Şimşek İ., Talaş S., Kurt, A., The evolution of phases in FeNiCoCrCuBx high entropy alloys produced through microwave sintering and vacuum arc melting. Revista de Metalurgia, 58(1), 2022.
- Algan Şimşek İ.B., Arık M.N., Talaş Ş., Kurt A., The effect of B addition on the microstructural and mechanical properties of FeNiCoCrCu high entropy alloys. Metallurgical and Materials Transactions A, 52, 1749-1758, 2021.
- Chen M.R., Lin S.J., Yeh J.W., Chen S.K., Huang Y.S., Tu C.P., Microstructure and properties of Al0. 5CoCrCuFeNiTix (x= 0–2.0) high-entropy alloys. Materials transactions, 47(5), 1395-1401, 2006.
Chuang M.H., Tsai M.H., Wang W.R., Lin S.J., Yeh J.W., Microstructure and wear behavior of AlxCo1. 5CrFeNi1. 5Tiy high-entropy alloys. Acta Materialia, 59(16), 6308-6317, 2011.
- Gao M.C., Miracle D.B., Maurice D., Yan X., Zhang Y., Hawk J.A. High-entropy functional materials. Journal of Materials Research, 33(19), 3138-3155, 2018.
- Gao M.C., Yeh J.W., Liaw P.K., Zhang Y., High-entropy alloys: fundamentals and applications. Springer. 2016.
- He J.Y., Liu W.H., Wang H., Wu Y., Liu X.J., Nieh T.G., Lu Z.P., Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. Acta Materialia, 62, 105-113, 2014.
- He J.Y., Wang H., Huang H.L., Xu X.D., Chen, M.W., Wu Y., Liu X.J., Nieh T.G., An K., Lu Z.P., A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Materialia, 102, 187-196, 2016.
- Huo W.Y., Shi H.F., Ren X., Zhang J.Y., Microstructure and Wear Behavior of CoCrFeMnNbNi High‐Entropy Alloy Coating by TIG Cladding. Advances in Materials Science and Engineering, 2015(1), 647351, 2015.
- İçin K., Investigation of phase transformation related magnetic properties of Ti addition to FeCoCuNiMn and FeCoCuNiAl high entropy alloys by vacuum arc melting. Materials Today Communications, 39, 108821, 2024.
- İçin K., Sünbül S.E., Yıldız A., Cantor Yüksek Entropili Alaşımına Mn Yerine Cu İkamesinin Yapısal ve Mekanik Özellikler Üzerindeki Etkisinin Araştırılması. Gazi University Journal of Science Part C: Design and Technology, 11(2), 379-387, 2023.
- Jain R., Rahul M.R., Jain S., Samal S., Kumar V., Phase evolution and mechanical behaviour of Co–Fe–Mn–Ni–Ti eutectic high entropy alloys. Transactions of the Indian Institute of Metals, 71, 2795-2799, 2018.
- Luan H.W., Shao Y., Li J.F., Mao W.L., Han Z.D., Shao C., Yao K.F., Phase stabilities of high entropy alloys. Scripta Materialia, 179, 40-44, 2020.
- Mehranpour M.S., Shahmir H., Derakhshandeh A., Nili-Ahmadabadi M., Significance of Ti addition on precipitation in CoCrFeNiMn high-entropy alloy. Journal of Alloys and Compounds, 888, 161530, 2021.
- Murty B.S., Yeh J.W., Ranganathan S., High-entropy alloys. Elsevier, 2014.
- Otto F., Dlouhý A., Pradeep K.G., Kuběnová M., Raabe D., Eggeler G., George E.P., Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures. Acta Materialia, 112, 40-52, 2016.
- Otto F., Dlouhý A., Somsen C., Bei H., Eggeler G., George E.P. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Materialia, 61(15), 5743-5755, 2013.
- Shahmir H., Mehranpour M.S., Shams S.A.A., Langdon T.G., Twenty years of the CoCrFeNiMn high-entropy alloy: Achieving exceptional mechanical properties through microstructure engineering. Journal of Materials Research and Technology, 23, 3362-3423, 2023.
- Shun T.T., Chang L.Y., Shiu M.H., Microstructures and mechanical properties of multiprincipal component CoCrFeNiTix alloys. Materials Science and Engineering: A, 556, 170-174, 2012.
- Tan C., Sun Q., Xiao L., Zhao, Y., Sun J., Slip transmission behavior across α/β interface and strength prediction with a modified rule of mixtures in TC21 titanium alloy. Journal of Alloys and Compounds, 724, 112-120, 2017.
- Tan C., Sun Q., Zhang G., Role of microstructure in plastic deformation and crack propagation behaviour of an α/β titanium alloy. Vacuum, 183, 109848, 2021.
- Xiaotao L., Wenbin L., Lijuan M., Jinling L., Jing L., Jianzhong C., Effect of boron on the microstructure, phase assemblage and wear properties of Al0. 5CoCrCuFeNi high-entropy alloy. Rare Metal Materials and Engineering, 45(9), 2201-2207, 2016.
- Yang X., Zhang Y., Prediction of high-entropy stabilized solid-solution in multi-component alloys. Materials Chemistry and Physics, 132(2-3), 233-238, 2012.
- Yeh J.W., Chen S.K., Lin S.J., Gan J.Y., Chin T.S., Shun T.T., Tsau C.H., Chang S.Y., Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced engineering materials, 6(5), 299-303, 2004.
- Yeh J.W., Recent progress in high entropy alloys. Annales De Chimie Science des Materiaux, 31(6), 633-648, 2006.
- Zhang W., Liaw P.K., Zhang Y., Science and technology in high-entropy alloys. Sci. China Mater, 61(1), 2-22, 2018.
- Zhang Y., Zuo T.T., Tang Z., Gao M.C., Dahmen K.A., Liaw P.K., Lu Z.P., Microstructures and properties of high-entropy alloys. Progress in materials science, 61, 1-93, 2014.
- Zhou Y.J., Zhang Y., Wang Y.L., Chen G.L., Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties. Applied physics letters, 90(18), 2007.
- Zhou Y.J., Zhang Y., Wang Y.L., Chen, G.L., Microstructure and compressive properties of multicomponent Alx (TiVCrMnFeCoNiCu) 100− x high-entropy alloys. Materials Science and Engineering: A, 454, 260-265, 2007.