Research Article
BibTex RIS Cite

Investigation of the Effect of Ni in MnFe-Based Cathodes Used in Sodium-Ion Batteries

Year 2024, , 383 - 397, 20.12.2024
https://doi.org/10.55546/jmm.1522909

Abstract

: P2-NaMnO2 layered metal oxide cathode materials are known as high-capacity and cost-effective battery materials for rechargeable batteries. However, applications are restricted due to Jahn-Teller distortion occurring during the intercalation of Na+ ions. Numerous studies have been conducted, suggesting that these distortions can be suppressed with various modifications. In this study, cathode material powders were produced via solid-state synthesis using varying ratios of Ni doping in the Na0.67Mn0.5-xNixFe0.43Al0.07O2 (x=0-0.5 mol%) compositions. Structural characterizations were performed by SEM for microstructural study, XRD for crystal structure determination, and FTIR analyses for detecting bond types. The lowest BET surface area was observed in the undoped composition among the investigated samples. CR2032 coin cells prepared with Na0.67Mn0.5-xNixFe0.43Al0.07O2/sodium metal were used for electrochemical analyses of the produced cathodes. CV, EIS, and capacity measurements of the cells were performed at room temperature. The highest capacity of the cells was found to be 172 mAh/g and 203 mAh/g at C/3 and C/20 rates, respectively, for the undoped samples. It was observed that with the increase in Ni content in Na0.67Mn0.5Fe0.43Al0.07O2, the distance between Na layers decreased. This can be attributed to the differences in the ionic radii of Mn and Ni ions replacing it in the crystal structure.

Project Number

21.FEN.BİL.40

Thanks

This study was supported by TUBITAK with the project number 220N335 and by Afyon Kocatepe University Scientific Research Projects Coordination Unit with the project code “21.FEN.BİL.40”.

References

  • Adekunle A. S., Oyekunle J. A. O., Oluwafemi O. S., Joshua A. O., Makinde W. O., Ogunfowokan A. O., Eleruja M. A., Ebenso E. E., Comparative Catalytic Properties of Ni(OH)2 and NiO Nanoparticles Towards the Degradation of Nitrite (NO2 - ) and Nitric Oxide (NO), International Journal of Electrochemical Science 9(6), 3008-3021, 2014.
  • Altin S. E., Altundağ S., Altin E. M., Harfouche M., Bayri A., An investigation of the improvement in energy storage performance of Na 2/3 Mn 1/2 Fe 1/2 O 2 by systematic Al-substitution. Journal of Materials Science: Materials in Electronics 31, 14784-14794, 2020.
  • Chaali Y., Dahbi M., Sabbar E., Zakaria D., Comparative study of Na0. 67Ni0. 25Co0. 17Mn0. 58O2 P-Type cathode materials for sodium-ion batteries: Combustion synthesis and combined analysis of structural, electrical, and dielectric properties. Ceramics International 49(21), 33607-33617, 2023.
  • Caballero A., Hernan L., Morales J., Sanchez L., Pena J. S., Aranda M. A., Synthesis and characterization of high-temperature hexagonal P2-Na 0.6 MnO 2 and its electrochemical behaviour as cathode in sodium cells. Journal of Materials Chemistry 12(4),1142-1147, 2002.
  • Calzaferri G., Gallagher S. H., Bruehwiler D., Multiple equilibria describe the complete adsorption isotherms of nonporous, microporous, and mesoporous adsorbents. Microporous and Mesoporous Materials 330, 111563, 2022.
  • Cao Y., Xiao M., Sun X., Dong W., Huang F., Recent Advances on High‐Capacity Sodium Manganese‐Based Oxide Cathodes for Sodium‐ion Batteries. Chemistry–A European Journal. 29(12), e202202997, 2023.
  • Choi J. U., Yoon C. S., Zhang Q., Kaghazchi P., Jung Y. H., Lee K. S., Ahn D. C., Sun Y. K. Myung S. T., Understanding on the structural and electrochemical performance of orthorhombic sodium manganese oxides. Journal of Materials Chemistry A 7(1), 202-211, 2019.
  • Choi W, Shin H. C., Kim J. M., Choi J.Y., Yoon W. S., Modeling and applications of electrochemical impedance spectroscopy (EIS) for lithium-ion batteries. Journal of Electrochemical Science and Technology 11(1), 1-13, 2020.
  • Ellis B. L, Nazar L. F, Sodium and sodium-ion energy storage batteries, Current Opinion in Solid State and Materials Science 16(4), 168-177, 2012.
  • Feng J., Luo S., Cai K., Yan S., Wang Q., Zhang Y., Liu X., Research progress of tunnel-type sodium manganese oxide cathodes for SIBs. Chinese Chemical Letters 33(5), 2316-2326, 2022.
  • Huang X., Li D., Huang H., Jiang X., Yang Z., Zhang W., Fast and highly reversible Na+ intercalation/extraction in Zn/Mg dual-doped P2-Na 0.67 MnO 2 cathode material for high-performance Na-ion batteries. Nano Research 14, 3531-3537, 2021.
  • Hwang J. Y., Myung S. T., Sun Y. K., Quaternary transition metal oxide layered framework: O3-type Na [Ni0. 32Fe0. 13Co0. 15Mn0. 40] O2 cathode material for high-performance sodium-ion batteries. Journal of Physical Chemistry C 122(25), 13500-13507, 2018.
  • Hwang J. Y., Du H. L., Yun B. N., Jeong M. G., Kim J. S., Kim H., Jung H. G., Sun Y. K., Carbon-free TiO2 microspheres as anode materials for sodium ion batteries. ACS Energy Letters 4(2), 494-501, 2019.
  • Jeong M., Lee, H., Yoon, J. and Yoon, W.S., O3-type NaNi1/3Fe1/3Mn1/3O2 layered cathode for Na-ion batteries: Structural evolution and redox mechanism upon Na (de) intercalation. Journal of Power Sources 439, 227064, 2019.
  • Jiang H., Qian G., Liu R., Liu W. D., Chen Y., Hu W., Effects of elemental doping on phase transitions of manganese-based layered oxides for sodium-ion batteries. Science China Materials 66(12), 4542-4549, 2023.
  • Kalyoncuoglu B., Ozgul M., Altundag S., Bulut F., Oz E., Sahinbay S., Altin S., High-performance Na-ion full-cells with P2-type Na0. 67Mn0. 5-xNixFe0. 43Al0. 07O2 cathodes: Cost analysis for stationary battery storage systems. Journal of Energy Storage 79, 110203, 2024.
  • Kanwade A., Gupta S., Kankane A., Tiwari M. K., Srivastava A., Satrughna J. A., Yadav S. C., Shirage P. M., Transition metal oxides as a cathode for indispensable Na-ion batteries. RSC advances 12(36), 23284-23310, 2022.
  • Kumakura S, Tahara Y, Kubota K, Chihara K, Komaba S. Sodium and manganese stoichiometry of P2‐type Na2/3MnO2. Angewandte Chemie International Edition. 4;55(41):12760-3, 2016.
  • Kumakura S., Tahara Y., Sato S., Kubota K., Komaba S., P′2-Na2/3Mn0. 9Me0. 1O2 (Me= Mg, Ti, Co, Ni, Cu, and Zn): correlation between orthorhombic distortion and electrochemical property. Chemistry of Materials 29(21), 8958-8962, 2017.
  • Li J. Y., Lü H. Y., Zhang X. H., Xing Y. M., Wang G., Guan H. Y., Wu X. L., P2-type Na0. 53MnO2 nanorods with superior rate capabilities as advanced cathode material for sodium ion batteries. Chemical Engineering Journal 316, 499-505, 2017.
  • Li S., Sun Y., Pang Y., Xia S., Chen T., Sun H., Zheng S., Yuan T., Recent developments of layered transition metal oxide cathodes for sodium‐ion batteries toward desired high performance. Asia‐Pacific Journal of Chemical Engineering 17(4), e2762, 2022.
  • Liang Y., Liu W., Wu H., Tang Z., Xu L., Developing high-performance sodium-ion battery cathode materials through regulating the Ni/Fe ratio in Na0. 67NixFe0. 52-xMn0. 48O2. Journal of Power Sources 617, 235159, 2024.
  • Liu Z., Xu X., Ji S., Zeng L., Zhang D., Liu J., Recent progress of P2‐type layered transition‐metal oxide cathodes for sodium‐ion batteries. Chemistry–A European Journal, 26(35), 7747-7766, 2020.
  • Liu X., Zhong G., Xiao Z., Zheng B., Zuo W., Zhou K., Liu H., Liang Z., Xiang Y., Chen Z., Ortiz G. F., Al and Fe-containing Mn-based layered cathode with controlled vacancies for high-rate sodium ion batteries. Nano Energy 76, 104997, 2020.
  • Luo C., Langrock A., Fan X., Liang Y., Wang C., P2-type transition metal oxides for high performance Na-ion battery cathodes. Journal of Materials Chemistry A 5(34), 18214-18220, 2017.
  • Ma P., Kang W., Wang Y., Cao D., Fan L., Sun D., Binary metal co-substituted P2-type Na0. 67Mn0. 7Cu0. 15Ni0. 15O2 microspheres as robust cathode for high-power sodium ion battery. Applied Surface Science, 529, 147105, 2020.
  • Mortemard de Boisse B., Carlier D., Guignard M., Bourgeois L., Delmas C., P2-Na x Mn1/2Fe1/2O2 phase used as positive electrode in Na batteries: Structural changes induced by the electrochemical (de) intercalation process. Inorganic chemistry 53(20), 11197-11205, 2014.
  • Mullaliu A., Kuroki K., Keller M., Kubota K., Buchholz D., Komaba S., Passerini S., Structural investigation of quaternary layered oxides upon Na-ion deinsertion. Inorganic Chemistry. 59(11), 7408-7414, 2020.
  • Palomares V., Serras P., Villaluenga I., Hueso K. B., Carretero-González J., Rojo T., Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy & Environmental Science 5(3), 5884-5901, 2012.
  • Rahmawati F., Kusumaningtyas A. A., Saraswati T. E., Prasetyo A., Suendo V., Mn-doped NaFeO2 from a low purity-Fe precursor and its performance as cathode for Sodium-Ion Battery. Inorganic and Nano-Metal Chemistry 51(3), 383-390, 2020.
  • Ramasamy H.V., Kaliyappan K., Thangavel R., Seong W. M., Kang K., Chen Z., Lee Y. S., Efficient method of designing stable layered cathode material for sodium ion batteries using aluminum doping. Journal of Physical Chemistry Letters 8(20), 5021-5030, 2017.
  • Wang H., Liao X. Z., Yang Y., Yan X., He Y. S., Ma Z. F., Large-scale synthesis of NaNi1/3Fe1/3Mn1/3O2 as high performance cathode materials for sodium ion batteries. Journal of The Electrochemical Society 163(3), A565, 2016.
  • Wang H., Gao R., Li Z., Sun L., Hu Z., Liu X., Different effects of Al substitution for Mn or Fe on the structure and electrochemical properties of Na0. 67Mn0. 5Fe0. 5O2 as a sodium ion battery cathode material. Inorganic chemistry 57(9), 5249-5257, 2018.
  • Wang Y., Wang X., Li X., Yu R., Chen M., Tang K., Zhang X., The novel P3-type layered Na0. 65Mn0. 75Ni0. 25O2 oxides doped by non-metallic elements for high performance sodium-ion batteries. Chemical Engineering Journal 360, 139-147, 2019.
  • Wu X., Xu G. L., Zhong G., Gong Z., McDonald M. J., Zheng S., Fu R., Chen Z., Amine K., Yang Y., Insights into the effects of zinc doping on structural phase transition of P2-type sodium nickel manganese oxide cathodes for high-energy sodium ion batteries. ACS applied materials & interfaces 8(34), 22227-22237, 2016.
  • Xie Y., Wang H., Xu G., Wang J., Sheng H., Chen Z., Ren Y., Sun C. J., Wen J., Wang J., Miller D. J., In operando XRD and TXM study on the metastable structure change of NaNi1/3Fe1/3Mn1/3O2 under electrochemical sodium‐ion intercalation. Advanced Energy Materials 6(24), 1601306, 2016.
  • Yabuuchi N., Kubota K., Dahbi M., Komaba S., Research development on sodium-ion batteries. Chemical reviews 114(23), 11636-11682, 2014.
  • You Y., Dolocan A., Li W., Manthiram A., Understanding the air-exposure degradation chemistry at a nanoscale of layered oxide cathodes for sodium-ion batteries. Nano letters 19(1), 182-188, 2018.
  • Yuan D., Hu X., Qian J., Pei F., Wu F., Mao R., Ai X., Yang H., Cao Y., P2-type Na0. 67Mn0. 65Fe0. 2Ni0. 15O2 cathode material with high-capacity for sodium-ion battery. Electrochimica Acta 116, 300-305, 2014.
  • Zhang L., Wang C., Liu Y., Ren M., Du J., Chen A., Li F., Suppressing interlayer-gliding and Jahn-Teller effect in P2-type layered manganese oxide cathode via Mo doping for sodium-ion batteries. Chemical Engineering Journal, 426, 130813, 2021.
  • Zhao W., Kirie H., Tanaka A., Unno M., Yamamoto S., Noguchi H., Synthesis of metal ion substituted P2-Na2/3Ni1/3Mn2/3O2 cathode material with enhanced performance for Na ion batteries. Materials Letters 135, 131-134, 2014.
  • Zhao Y., Li L., Wu Y., Fang Y., Xie, H., Progress of the Elements Doped NaFeO2 Cathode Materials for High Performance Sodium‐ion Batteries. Chemistry Select 6(36), 9701-9708, 2021.
  • Zhang X., Qiu F., Jiang K., He P., Han M., Guo S., Zhou H., Improving the structural and cyclic stabilities of P2-type Na 0.67 MnO 2 cathode material via Cu and Ti co-substitution for sodium ion batteries. Chemical Communications 56(46), 6293-6296, 2020.
  • Zheng M., Zhang H., Gong X., Xu R., Xiao Y., Dong H., Liu X., Liu Y., A simple additive-free approach for the synthesis of uniform manganese monoxide nanorods with large specific surface area, Nanoscale Research Letters 8, 1-7, 2013.
  • Zhou D., Zeng C., Xiang J., Wang T., Gao Z., An C., Huang W., Review on Mn-based and Fe-based layered cathode materials for sodium-ion batteries. Ionics 28(5), 2029-2040, 2022.

Sodyum-iyon Pillerde Kullanılan MnFe-Bazlı Katotlarda Ni Etkisinin Araştırılması

Year 2024, , 383 - 397, 20.12.2024
https://doi.org/10.55546/jmm.1522909

Abstract

P2-NaMnO2 tabakalı metal oksit katot malzemeleri şarj edilebilir piller için yüksek kapasiteli ve ucuz bir pil malzemesi olarak bilinmektedir. Ancak Na+ iyonlarının interkalasyonu sırasında oluşan “Jahn-Teller bozulması” uygulamalarda kısıtlamalara neden olmaktadır. Yapılan çeşitli katkılamalarla bu bozulmaların baskılandığına dair çalışmalar mevcuttur. Bu çalışmada, x=0-0.5 mol% aralığında değişen oranlarda Ni katkılama ile katı hal sentezi yöntemi ile Na0.67Mn0.5-xNixFe0.43Al0.07O2 kompozisyonlarında katot malzemesi tozları üretildi. Üretilen örneklerin mikro yapı incelemeleri için SEM, kristal yapı tayini için XRD ve bağ türlerinin tespiti için FTIR analizleri ile yapısal karakterizasyonları gerçekleştirildi. İncelenen örnekler arasında en düşük BET yüzey alanı katkısız kompozisyonda gözlemlenmiştir. Üretilen katotların elektrokimyasal analizleri için Na0.67Mn0.5-xNixFe0.43Al0.07O2/sodyum metali ile hazırlanan CR2032 düğme pil hücreleri kullanıldı. Oluşturulan hücrelerin CV, EIS ve kapasite ölçümleri oda sıcaklığında gerçekleştirildi. Hücrelerin en yüksek kapasitesi katkısız örneklerde C/3 ve C/20 hızlarında sırasıyla 172 mAh/g ve 203 mAh/g olarak bulundu. Ni'in Na0.67Mn0.5Fe0.43Al0.07O2 içindeki içeriğinin artmasıyla Na tabakaları arasındaki mesafenin azaldığı görülmüştür. Bu durumun kristal yapıdaki Mn ve onunla yer değiştiren Ni iyonlarının iyonik yarıçaplarındaki farklılıktan kaynaklandığı söylenebilir.

Supporting Institution

TUBITAK, Afyon Kocatepe Üniversitesi

Project Number

21.FEN.BİL.40

Thanks

Bu çalışma, TÜBİTAK tarafından 220N335 başvuru numaralı proje ve Afyon Kocatepe Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından “21.FEN.BİL.40” kodlu proje ile desteklenmiştir.

References

  • Adekunle A. S., Oyekunle J. A. O., Oluwafemi O. S., Joshua A. O., Makinde W. O., Ogunfowokan A. O., Eleruja M. A., Ebenso E. E., Comparative Catalytic Properties of Ni(OH)2 and NiO Nanoparticles Towards the Degradation of Nitrite (NO2 - ) and Nitric Oxide (NO), International Journal of Electrochemical Science 9(6), 3008-3021, 2014.
  • Altin S. E., Altundağ S., Altin E. M., Harfouche M., Bayri A., An investigation of the improvement in energy storage performance of Na 2/3 Mn 1/2 Fe 1/2 O 2 by systematic Al-substitution. Journal of Materials Science: Materials in Electronics 31, 14784-14794, 2020.
  • Chaali Y., Dahbi M., Sabbar E., Zakaria D., Comparative study of Na0. 67Ni0. 25Co0. 17Mn0. 58O2 P-Type cathode materials for sodium-ion batteries: Combustion synthesis and combined analysis of structural, electrical, and dielectric properties. Ceramics International 49(21), 33607-33617, 2023.
  • Caballero A., Hernan L., Morales J., Sanchez L., Pena J. S., Aranda M. A., Synthesis and characterization of high-temperature hexagonal P2-Na 0.6 MnO 2 and its electrochemical behaviour as cathode in sodium cells. Journal of Materials Chemistry 12(4),1142-1147, 2002.
  • Calzaferri G., Gallagher S. H., Bruehwiler D., Multiple equilibria describe the complete adsorption isotherms of nonporous, microporous, and mesoporous adsorbents. Microporous and Mesoporous Materials 330, 111563, 2022.
  • Cao Y., Xiao M., Sun X., Dong W., Huang F., Recent Advances on High‐Capacity Sodium Manganese‐Based Oxide Cathodes for Sodium‐ion Batteries. Chemistry–A European Journal. 29(12), e202202997, 2023.
  • Choi J. U., Yoon C. S., Zhang Q., Kaghazchi P., Jung Y. H., Lee K. S., Ahn D. C., Sun Y. K. Myung S. T., Understanding on the structural and electrochemical performance of orthorhombic sodium manganese oxides. Journal of Materials Chemistry A 7(1), 202-211, 2019.
  • Choi W, Shin H. C., Kim J. M., Choi J.Y., Yoon W. S., Modeling and applications of electrochemical impedance spectroscopy (EIS) for lithium-ion batteries. Journal of Electrochemical Science and Technology 11(1), 1-13, 2020.
  • Ellis B. L, Nazar L. F, Sodium and sodium-ion energy storage batteries, Current Opinion in Solid State and Materials Science 16(4), 168-177, 2012.
  • Feng J., Luo S., Cai K., Yan S., Wang Q., Zhang Y., Liu X., Research progress of tunnel-type sodium manganese oxide cathodes for SIBs. Chinese Chemical Letters 33(5), 2316-2326, 2022.
  • Huang X., Li D., Huang H., Jiang X., Yang Z., Zhang W., Fast and highly reversible Na+ intercalation/extraction in Zn/Mg dual-doped P2-Na 0.67 MnO 2 cathode material for high-performance Na-ion batteries. Nano Research 14, 3531-3537, 2021.
  • Hwang J. Y., Myung S. T., Sun Y. K., Quaternary transition metal oxide layered framework: O3-type Na [Ni0. 32Fe0. 13Co0. 15Mn0. 40] O2 cathode material for high-performance sodium-ion batteries. Journal of Physical Chemistry C 122(25), 13500-13507, 2018.
  • Hwang J. Y., Du H. L., Yun B. N., Jeong M. G., Kim J. S., Kim H., Jung H. G., Sun Y. K., Carbon-free TiO2 microspheres as anode materials for sodium ion batteries. ACS Energy Letters 4(2), 494-501, 2019.
  • Jeong M., Lee, H., Yoon, J. and Yoon, W.S., O3-type NaNi1/3Fe1/3Mn1/3O2 layered cathode for Na-ion batteries: Structural evolution and redox mechanism upon Na (de) intercalation. Journal of Power Sources 439, 227064, 2019.
  • Jiang H., Qian G., Liu R., Liu W. D., Chen Y., Hu W., Effects of elemental doping on phase transitions of manganese-based layered oxides for sodium-ion batteries. Science China Materials 66(12), 4542-4549, 2023.
  • Kalyoncuoglu B., Ozgul M., Altundag S., Bulut F., Oz E., Sahinbay S., Altin S., High-performance Na-ion full-cells with P2-type Na0. 67Mn0. 5-xNixFe0. 43Al0. 07O2 cathodes: Cost analysis for stationary battery storage systems. Journal of Energy Storage 79, 110203, 2024.
  • Kanwade A., Gupta S., Kankane A., Tiwari M. K., Srivastava A., Satrughna J. A., Yadav S. C., Shirage P. M., Transition metal oxides as a cathode for indispensable Na-ion batteries. RSC advances 12(36), 23284-23310, 2022.
  • Kumakura S, Tahara Y, Kubota K, Chihara K, Komaba S. Sodium and manganese stoichiometry of P2‐type Na2/3MnO2. Angewandte Chemie International Edition. 4;55(41):12760-3, 2016.
  • Kumakura S., Tahara Y., Sato S., Kubota K., Komaba S., P′2-Na2/3Mn0. 9Me0. 1O2 (Me= Mg, Ti, Co, Ni, Cu, and Zn): correlation between orthorhombic distortion and electrochemical property. Chemistry of Materials 29(21), 8958-8962, 2017.
  • Li J. Y., Lü H. Y., Zhang X. H., Xing Y. M., Wang G., Guan H. Y., Wu X. L., P2-type Na0. 53MnO2 nanorods with superior rate capabilities as advanced cathode material for sodium ion batteries. Chemical Engineering Journal 316, 499-505, 2017.
  • Li S., Sun Y., Pang Y., Xia S., Chen T., Sun H., Zheng S., Yuan T., Recent developments of layered transition metal oxide cathodes for sodium‐ion batteries toward desired high performance. Asia‐Pacific Journal of Chemical Engineering 17(4), e2762, 2022.
  • Liang Y., Liu W., Wu H., Tang Z., Xu L., Developing high-performance sodium-ion battery cathode materials through regulating the Ni/Fe ratio in Na0. 67NixFe0. 52-xMn0. 48O2. Journal of Power Sources 617, 235159, 2024.
  • Liu Z., Xu X., Ji S., Zeng L., Zhang D., Liu J., Recent progress of P2‐type layered transition‐metal oxide cathodes for sodium‐ion batteries. Chemistry–A European Journal, 26(35), 7747-7766, 2020.
  • Liu X., Zhong G., Xiao Z., Zheng B., Zuo W., Zhou K., Liu H., Liang Z., Xiang Y., Chen Z., Ortiz G. F., Al and Fe-containing Mn-based layered cathode with controlled vacancies for high-rate sodium ion batteries. Nano Energy 76, 104997, 2020.
  • Luo C., Langrock A., Fan X., Liang Y., Wang C., P2-type transition metal oxides for high performance Na-ion battery cathodes. Journal of Materials Chemistry A 5(34), 18214-18220, 2017.
  • Ma P., Kang W., Wang Y., Cao D., Fan L., Sun D., Binary metal co-substituted P2-type Na0. 67Mn0. 7Cu0. 15Ni0. 15O2 microspheres as robust cathode for high-power sodium ion battery. Applied Surface Science, 529, 147105, 2020.
  • Mortemard de Boisse B., Carlier D., Guignard M., Bourgeois L., Delmas C., P2-Na x Mn1/2Fe1/2O2 phase used as positive electrode in Na batteries: Structural changes induced by the electrochemical (de) intercalation process. Inorganic chemistry 53(20), 11197-11205, 2014.
  • Mullaliu A., Kuroki K., Keller M., Kubota K., Buchholz D., Komaba S., Passerini S., Structural investigation of quaternary layered oxides upon Na-ion deinsertion. Inorganic Chemistry. 59(11), 7408-7414, 2020.
  • Palomares V., Serras P., Villaluenga I., Hueso K. B., Carretero-González J., Rojo T., Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy & Environmental Science 5(3), 5884-5901, 2012.
  • Rahmawati F., Kusumaningtyas A. A., Saraswati T. E., Prasetyo A., Suendo V., Mn-doped NaFeO2 from a low purity-Fe precursor and its performance as cathode for Sodium-Ion Battery. Inorganic and Nano-Metal Chemistry 51(3), 383-390, 2020.
  • Ramasamy H.V., Kaliyappan K., Thangavel R., Seong W. M., Kang K., Chen Z., Lee Y. S., Efficient method of designing stable layered cathode material for sodium ion batteries using aluminum doping. Journal of Physical Chemistry Letters 8(20), 5021-5030, 2017.
  • Wang H., Liao X. Z., Yang Y., Yan X., He Y. S., Ma Z. F., Large-scale synthesis of NaNi1/3Fe1/3Mn1/3O2 as high performance cathode materials for sodium ion batteries. Journal of The Electrochemical Society 163(3), A565, 2016.
  • Wang H., Gao R., Li Z., Sun L., Hu Z., Liu X., Different effects of Al substitution for Mn or Fe on the structure and electrochemical properties of Na0. 67Mn0. 5Fe0. 5O2 as a sodium ion battery cathode material. Inorganic chemistry 57(9), 5249-5257, 2018.
  • Wang Y., Wang X., Li X., Yu R., Chen M., Tang K., Zhang X., The novel P3-type layered Na0. 65Mn0. 75Ni0. 25O2 oxides doped by non-metallic elements for high performance sodium-ion batteries. Chemical Engineering Journal 360, 139-147, 2019.
  • Wu X., Xu G. L., Zhong G., Gong Z., McDonald M. J., Zheng S., Fu R., Chen Z., Amine K., Yang Y., Insights into the effects of zinc doping on structural phase transition of P2-type sodium nickel manganese oxide cathodes for high-energy sodium ion batteries. ACS applied materials & interfaces 8(34), 22227-22237, 2016.
  • Xie Y., Wang H., Xu G., Wang J., Sheng H., Chen Z., Ren Y., Sun C. J., Wen J., Wang J., Miller D. J., In operando XRD and TXM study on the metastable structure change of NaNi1/3Fe1/3Mn1/3O2 under electrochemical sodium‐ion intercalation. Advanced Energy Materials 6(24), 1601306, 2016.
  • Yabuuchi N., Kubota K., Dahbi M., Komaba S., Research development on sodium-ion batteries. Chemical reviews 114(23), 11636-11682, 2014.
  • You Y., Dolocan A., Li W., Manthiram A., Understanding the air-exposure degradation chemistry at a nanoscale of layered oxide cathodes for sodium-ion batteries. Nano letters 19(1), 182-188, 2018.
  • Yuan D., Hu X., Qian J., Pei F., Wu F., Mao R., Ai X., Yang H., Cao Y., P2-type Na0. 67Mn0. 65Fe0. 2Ni0. 15O2 cathode material with high-capacity for sodium-ion battery. Electrochimica Acta 116, 300-305, 2014.
  • Zhang L., Wang C., Liu Y., Ren M., Du J., Chen A., Li F., Suppressing interlayer-gliding and Jahn-Teller effect in P2-type layered manganese oxide cathode via Mo doping for sodium-ion batteries. Chemical Engineering Journal, 426, 130813, 2021.
  • Zhao W., Kirie H., Tanaka A., Unno M., Yamamoto S., Noguchi H., Synthesis of metal ion substituted P2-Na2/3Ni1/3Mn2/3O2 cathode material with enhanced performance for Na ion batteries. Materials Letters 135, 131-134, 2014.
  • Zhao Y., Li L., Wu Y., Fang Y., Xie, H., Progress of the Elements Doped NaFeO2 Cathode Materials for High Performance Sodium‐ion Batteries. Chemistry Select 6(36), 9701-9708, 2021.
  • Zhang X., Qiu F., Jiang K., He P., Han M., Guo S., Zhou H., Improving the structural and cyclic stabilities of P2-type Na 0.67 MnO 2 cathode material via Cu and Ti co-substitution for sodium ion batteries. Chemical Communications 56(46), 6293-6296, 2020.
  • Zheng M., Zhang H., Gong X., Xu R., Xiao Y., Dong H., Liu X., Liu Y., A simple additive-free approach for the synthesis of uniform manganese monoxide nanorods with large specific surface area, Nanoscale Research Letters 8, 1-7, 2013.
  • Zhou D., Zeng C., Xiang J., Wang T., Gao Z., An C., Huang W., Review on Mn-based and Fe-based layered cathode materials for sodium-ion batteries. Ionics 28(5), 2029-2040, 2022.
There are 45 citations in total.

Details

Primary Language Turkish
Subjects Electrochemical Energy Storage and Conversion, Material Production Technologies
Journal Section Research Articles
Authors

Burcu Kalyoncuoğlu 0000-0002-3758-7111

Serdar Altın 0000-0002-4590-907X

Metin Özgül 0000-0003-4273-5868

Project Number 21.FEN.BİL.40
Publication Date December 20, 2024
Submission Date July 26, 2024
Acceptance Date December 14, 2024
Published in Issue Year 2024

Cite

APA Kalyoncuoğlu, B., Altın, S., & Özgül, M. (2024). Sodyum-iyon Pillerde Kullanılan MnFe-Bazlı Katotlarda Ni Etkisinin Araştırılması. Journal of Materials and Mechatronics: A, 5(2), 383-397. https://doi.org/10.55546/jmm.1522909
AMA Kalyoncuoğlu B, Altın S, Özgül M. Sodyum-iyon Pillerde Kullanılan MnFe-Bazlı Katotlarda Ni Etkisinin Araştırılması. J. Mater. Mechat. A. December 2024;5(2):383-397. doi:10.55546/jmm.1522909
Chicago Kalyoncuoğlu, Burcu, Serdar Altın, and Metin Özgül. “Sodyum-Iyon Pillerde Kullanılan MnFe-Bazlı Katotlarda Ni Etkisinin Araştırılması”. Journal of Materials and Mechatronics: A 5, no. 2 (December 2024): 383-97. https://doi.org/10.55546/jmm.1522909.
EndNote Kalyoncuoğlu B, Altın S, Özgül M (December 1, 2024) Sodyum-iyon Pillerde Kullanılan MnFe-Bazlı Katotlarda Ni Etkisinin Araştırılması. Journal of Materials and Mechatronics: A 5 2 383–397.
IEEE B. Kalyoncuoğlu, S. Altın, and M. Özgül, “Sodyum-iyon Pillerde Kullanılan MnFe-Bazlı Katotlarda Ni Etkisinin Araştırılması”, J. Mater. Mechat. A, vol. 5, no. 2, pp. 383–397, 2024, doi: 10.55546/jmm.1522909.
ISNAD Kalyoncuoğlu, Burcu et al. “Sodyum-Iyon Pillerde Kullanılan MnFe-Bazlı Katotlarda Ni Etkisinin Araştırılması”. Journal of Materials and Mechatronics: A 5/2 (December 2024), 383-397. https://doi.org/10.55546/jmm.1522909.
JAMA Kalyoncuoğlu B, Altın S, Özgül M. Sodyum-iyon Pillerde Kullanılan MnFe-Bazlı Katotlarda Ni Etkisinin Araştırılması. J. Mater. Mechat. A. 2024;5:383–397.
MLA Kalyoncuoğlu, Burcu et al. “Sodyum-Iyon Pillerde Kullanılan MnFe-Bazlı Katotlarda Ni Etkisinin Araştırılması”. Journal of Materials and Mechatronics: A, vol. 5, no. 2, 2024, pp. 383-97, doi:10.55546/jmm.1522909.
Vancouver Kalyoncuoğlu B, Altın S, Özgül M. Sodyum-iyon Pillerde Kullanılan MnFe-Bazlı Katotlarda Ni Etkisinin Araştırılması. J. Mater. Mechat. A. 2024;5(2):383-97.