Research Article
BibTex RIS Cite

Development of Battery-Independent Illumination Drones Integrated into Tethered UAVs for Extended Operations

Year 2024, , 250 - 262, 20.12.2024
https://doi.org/10.55546/jmm.1541043

Abstract

This study presents the design of an unmanned aerial vehicle (UAV) specifically developed for extended illumination in surveillance, search and rescue (SAR) operations, security enforcement, border surveillance, and other applications requiring lighting, particularly in disaster areas. Traditional battery-powered UAVs have limited operational time; therefore, a tethered drone design was implemented in this study to overcome flight duration constraints. The direct current (DC) energy required for the tethered drone is supplied by a Gold Series switch-mode power supply (SMPS) mounted on the drone. The alternating current (AC) energy needed for the SMPS is transmitted through a cable. Additionally, the light-emitting diode (LED) projector, operating on AC 220 volts, is powered by the same cable that supplies the drone, eliminating the need for an additional DC converter. This design choice reduces weight and ensures an optimized configuration. The projector is mounted on servos with dual-axis capability, allowing both horizontal and vertical movement to precisely illuminate the target area. Although studies on tethered and illumination drones exist in the literature, this work combines two distinct drone systems to create a more efficient UAV design. In the design process, considerations were made for various environmental conditions, particularly wind. Consequently, the thrust-to-weight (T/W) ratio was determined to be 1.54. For cable cross section, a 1.5% voltage drop was accounted for, yielding a required cross section of 1.16mm². However, to ensure safety and reliability, a cable with a cross section of 1.5mm² was selected. This proposed model, distinct from other studies in the literature, offers a practical design for field applications, particularly for night SAR operations in disaster zones such as earthquake sites, due to its point-focus illumination capability and extended flight duration.

References

  • Alqurashi F., Trichili A., Saeed N., Ooi B., Alouini M., Maritime communications: a survey on enabling technologies, opportunities, and challenges. IEEE Internet of Things Journal 10(4), 3525-3547, 2023.
  • Banuls A., Mandow A., Vázquez-Martín R., Morales J., García-Cerezo A., Object detection from thermal infrared and visible light cameras in search and rescue scenes, In 2020 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), November, 2020, pp: 380-386.
  • Bushnaq O., Kishk M., Çelik A., Alouini M., Al-Naffouri T., Optimal deployment of tethered drones for maximum cellular coverage in user clusters, IEEE Transactions on Wireless Communications 20(3), 2092-2108, 2021.
  • Cherif N., Jaafar W., Vinogradov E., Yanıkömeroğlu H., Pollin S., Yongaçoğlu A., ITUAVs: intermittently tethered UAVs for future wireless networks. IEEE Wireless Communications, 30(4), 124-130, 2023.
  • Hashim A., Tamizi M., Development of drone for search and rescue operation in Malaysia flood disaster. International Journal of Engineering & Technology 7(3.7), 9-12, 2018.
  • Hoshiba K., Washizaki K., Wakabayashi M., Ishiki T., Kumon M., Bando Y., Okuno H., Design of UAV-embedded microphone array system for sound source localization in outdoor environments. Sensors 17(11), 2535, 2017.
  • Huang J., Tian G., Zhang J., Chen Y., On unmanned aerial vehicles light show systems: Algorithms, software and hardware. Applied Sciences 11(16), 7687, 2021.
  • Huang Q., Wen W., Liu M., Du P., Chen C., Energy-Efficient Unmanned Aerial Vehicle-Aided Visible Light Communication with an Angle Diversity Transmitter for Joint Emergency Illumination and Communication. Sensors 23(18), 7886, 2023.
  • Ibraiwish H., Eltokhey M. W., Alouini M. S., UAV-Assisted VLC Using LED-Based Grow Lights in Precision Agriculture Systems. IEEE Internet of Things Magazine 7(3), 100-105, 2024.
  • Islam S. M., Oba L., Lubecke V. M., Empirical Mode Decomposition (EMD) for platform motion compensation in remote life sensing radar, In 2022 IEEE Radio and Wireless Symposium (RWS), 2022, pp: 41-44.
  • Joung M., Kim H., Baek J., Dynamic analysis and optimal design of high efficiency full bridge LLC resonant converter for server power system, Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Orlando, FL, USA, 2012, pp: 1292-1297.
  • Kays R., Sheppard J., McLean K., Welch C., Paunescu C., Wang V., Crofoot M., Hot monkey, cold reality: surveying rainforest canopy mammals using drone-mounted thermal infrared sensors. International Journal of Remote Sensing, 40(2), 407-419, 2018.
  • Khalil H., Rahman S., Ullah I., Khan I., Alghadhban A., Al-Adhaileh M., ElAffendi M., A UAV-swarm-communication model using a machine-learning approach for search-and-rescue applications. Drones 6(12), 372, 2022.
  • Kishk M., Bader A., Alouini M., Aerial base station deployment in 6G cellular networks using tethered drones: the mobility and endurance tradeoff. IEEE Vehicular Technology Magazine 15(4), 103-111, 2020.
  • Krátký V., Alcántara A., Capitán J., Štěpán P., Saska M., Ollero A., Autonomous aerial filming with distributed lighting by a team of unmanned aerial vehicles. IEEE Robotics and Automation Letters 6(4), 7580-7587, 2021.
  • Lai Y. L., Lai Y. K., Yang K. H., Huang J. C., Zheng C. Y., Cheng Y. C., Chiang Y. W., An unmanned aerial vehicle for search and rescue applications. In Journal of Physics: Conference Series, IOP Publishing, November 2023, Vol. 2631, No. 1, p. 012007.
  • Lemaire P., Crispim-Junior C., Robinault L., Tougne L., Jitter-free registration for unmanned aerial vehicle videos. In Advances in Visual Computing: 15th International Symposium on Visual Computing, 2019, pp: 529-539.
  • Ma B., Pan Y., Xu Y., Zhang Z., Chen C., Li C., ILLUMINE: Illumination UAVs deployment optimization based on consumer drone. Ad Hoc Networks, 163, 103587, 2024.
  • Mayor V., Estepa R., Estepa A., Madinabeitia G., Communication drone technology for disaster management in rural and remote areas. IEEE Access 7, 76286-76295, 2019.
  • Özkaya M., Tüfekçi T., Aydınlatma Tekniği, Birsen Yayınevi, İstanbul, pp. 423-447, 2011.
  • Semsch J., Weller J., Janning B., UAV systems for urban surveillance: operational challenges and performance evaluation. Journal of Unmanned Vehicle Systems 7(2), 56-67, 2009.
  • Shirbhate A., Das S., Static and Dynamic Beach Lighting Using Cloud based UAV. In 2019 IEEE Pune Section International Conference (PuneCon) December 2019, pp: 1-4.
  • Tang X., Optimal design and analysis of tethered UAV systems for stable aerial operations. Aerospace Science and Technology 133, 106493, 2024.
  • Tao Y., Xie Z., Zhang S., Zhai Y., A novel UAV-based forest fire detection and monitoring system. International Journal of Remote Sensing 43(24), 8321-8344, 2022.
  • Yang Y., Chen M., Guo C., Feng C., Saad W., Power efficient visible light communication with unmanned aerial vehicles. IEEE Communications Letters 23(7), 1272-1275, 2019.

Aydınlatma Dronlarının Pilden Bağımsız Kablolu Dronlara Entegre Edilerek çok Uzun Süreli Operasyonlar için Geliştirilmesi

Year 2024, , 250 - 262, 20.12.2024
https://doi.org/10.55546/jmm.1541043

Abstract

Bu çalışmada özellikle aydınlatmanın ihtiyaç duyulduğu afet bölgelerinde arama kurtarma operasyonları, güvenliğin sağlanması gereken alanlar, sınır güvenliği gibi uygulamalarda uzun süreli aydınlatmalar için kullanılabilecek bir insanız hava aracı tasarımı yapılmıştır. Pil ile çalışan hava araçlarının operasyon süresi kısa olacağından çalışmada tethered drone tasarımı yapılarak uçuş süresi probleminin önüne geçilmiştir. Tethered Drone için gerekli olan direct current (DC) enerji drone üzerinde bulunan bir gold serisi SMPS ile sağlanmıştır. Switch mode power supply (SMPS) için gerekli olan alternative current (AC) enerji bir kablo ile taşınarak SMPS beslenmiştir. Ayrıca aydınlatma için kullanılacak olan light emiting diode (LED) projektörü AC 220 volt seçilerek drona enerji sağlayan kablodan beslenmiştir. Dolayısı ile bu işlem için ayrıca bir DC dönüştürücü kullanılmamıştır. Böylece ağırlık azaltılarak optimum bir tasarım geçekleştirilmiştir. Projektör iki eksen servolara bağlanmış ve yatay ve dikeyde dönerek istenen bölgenin aydınlatılması sağlanmıştır. Literatürde tethered ve aydınlatma dronları ile alakalı çalışmalar olsa da bu çalışma iki farklı drone yapısını birleştirerek çok daha efektif bir hava aracı tasarımı ortaya koymuştur. Özellikle deprem gibi afet bölgelerinde gece yapılacak arama kurtarma operasyonlarında hem noktasal odaklama özelliği ile hemde uzun süre havada kalma kapasitesi ile literatürde bulunan diğer yayınlardan farklı olarak sahada uygulanabilir bir tasarım modeli ortaya koymaktadır.

References

  • Alqurashi F., Trichili A., Saeed N., Ooi B., Alouini M., Maritime communications: a survey on enabling technologies, opportunities, and challenges. IEEE Internet of Things Journal 10(4), 3525-3547, 2023.
  • Banuls A., Mandow A., Vázquez-Martín R., Morales J., García-Cerezo A., Object detection from thermal infrared and visible light cameras in search and rescue scenes, In 2020 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), November, 2020, pp: 380-386.
  • Bushnaq O., Kishk M., Çelik A., Alouini M., Al-Naffouri T., Optimal deployment of tethered drones for maximum cellular coverage in user clusters, IEEE Transactions on Wireless Communications 20(3), 2092-2108, 2021.
  • Cherif N., Jaafar W., Vinogradov E., Yanıkömeroğlu H., Pollin S., Yongaçoğlu A., ITUAVs: intermittently tethered UAVs for future wireless networks. IEEE Wireless Communications, 30(4), 124-130, 2023.
  • Hashim A., Tamizi M., Development of drone for search and rescue operation in Malaysia flood disaster. International Journal of Engineering & Technology 7(3.7), 9-12, 2018.
  • Hoshiba K., Washizaki K., Wakabayashi M., Ishiki T., Kumon M., Bando Y., Okuno H., Design of UAV-embedded microphone array system for sound source localization in outdoor environments. Sensors 17(11), 2535, 2017.
  • Huang J., Tian G., Zhang J., Chen Y., On unmanned aerial vehicles light show systems: Algorithms, software and hardware. Applied Sciences 11(16), 7687, 2021.
  • Huang Q., Wen W., Liu M., Du P., Chen C., Energy-Efficient Unmanned Aerial Vehicle-Aided Visible Light Communication with an Angle Diversity Transmitter for Joint Emergency Illumination and Communication. Sensors 23(18), 7886, 2023.
  • Ibraiwish H., Eltokhey M. W., Alouini M. S., UAV-Assisted VLC Using LED-Based Grow Lights in Precision Agriculture Systems. IEEE Internet of Things Magazine 7(3), 100-105, 2024.
  • Islam S. M., Oba L., Lubecke V. M., Empirical Mode Decomposition (EMD) for platform motion compensation in remote life sensing radar, In 2022 IEEE Radio and Wireless Symposium (RWS), 2022, pp: 41-44.
  • Joung M., Kim H., Baek J., Dynamic analysis and optimal design of high efficiency full bridge LLC resonant converter for server power system, Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Orlando, FL, USA, 2012, pp: 1292-1297.
  • Kays R., Sheppard J., McLean K., Welch C., Paunescu C., Wang V., Crofoot M., Hot monkey, cold reality: surveying rainforest canopy mammals using drone-mounted thermal infrared sensors. International Journal of Remote Sensing, 40(2), 407-419, 2018.
  • Khalil H., Rahman S., Ullah I., Khan I., Alghadhban A., Al-Adhaileh M., ElAffendi M., A UAV-swarm-communication model using a machine-learning approach for search-and-rescue applications. Drones 6(12), 372, 2022.
  • Kishk M., Bader A., Alouini M., Aerial base station deployment in 6G cellular networks using tethered drones: the mobility and endurance tradeoff. IEEE Vehicular Technology Magazine 15(4), 103-111, 2020.
  • Krátký V., Alcántara A., Capitán J., Štěpán P., Saska M., Ollero A., Autonomous aerial filming with distributed lighting by a team of unmanned aerial vehicles. IEEE Robotics and Automation Letters 6(4), 7580-7587, 2021.
  • Lai Y. L., Lai Y. K., Yang K. H., Huang J. C., Zheng C. Y., Cheng Y. C., Chiang Y. W., An unmanned aerial vehicle for search and rescue applications. In Journal of Physics: Conference Series, IOP Publishing, November 2023, Vol. 2631, No. 1, p. 012007.
  • Lemaire P., Crispim-Junior C., Robinault L., Tougne L., Jitter-free registration for unmanned aerial vehicle videos. In Advances in Visual Computing: 15th International Symposium on Visual Computing, 2019, pp: 529-539.
  • Ma B., Pan Y., Xu Y., Zhang Z., Chen C., Li C., ILLUMINE: Illumination UAVs deployment optimization based on consumer drone. Ad Hoc Networks, 163, 103587, 2024.
  • Mayor V., Estepa R., Estepa A., Madinabeitia G., Communication drone technology for disaster management in rural and remote areas. IEEE Access 7, 76286-76295, 2019.
  • Özkaya M., Tüfekçi T., Aydınlatma Tekniği, Birsen Yayınevi, İstanbul, pp. 423-447, 2011.
  • Semsch J., Weller J., Janning B., UAV systems for urban surveillance: operational challenges and performance evaluation. Journal of Unmanned Vehicle Systems 7(2), 56-67, 2009.
  • Shirbhate A., Das S., Static and Dynamic Beach Lighting Using Cloud based UAV. In 2019 IEEE Pune Section International Conference (PuneCon) December 2019, pp: 1-4.
  • Tang X., Optimal design and analysis of tethered UAV systems for stable aerial operations. Aerospace Science and Technology 133, 106493, 2024.
  • Tao Y., Xie Z., Zhang S., Zhai Y., A novel UAV-based forest fire detection and monitoring system. International Journal of Remote Sensing 43(24), 8321-8344, 2022.
  • Yang Y., Chen M., Guo C., Feng C., Saad W., Power efficient visible light communication with unmanned aerial vehicles. IEEE Communications Letters 23(7), 1272-1275, 2019.
There are 25 citations in total.

Details

Primary Language English
Subjects Mechatronics Hardware Design and Architecture, Mechatronics Engineering, Autonomous Vehicle Systems
Journal Section Research Articles
Authors

Tarık Ünler 0000-0002-2658-1902

Publication Date December 20, 2024
Submission Date August 30, 2024
Acceptance Date November 5, 2024
Published in Issue Year 2024

Cite

APA Ünler, T. (2024). Development of Battery-Independent Illumination Drones Integrated into Tethered UAVs for Extended Operations. Journal of Materials and Mechatronics: A, 5(2), 250-262. https://doi.org/10.55546/jmm.1541043
AMA Ünler T. Development of Battery-Independent Illumination Drones Integrated into Tethered UAVs for Extended Operations. J. Mater. Mechat. A. December 2024;5(2):250-262. doi:10.55546/jmm.1541043
Chicago Ünler, Tarık. “Development of Battery-Independent Illumination Drones Integrated into Tethered UAVs for Extended Operations”. Journal of Materials and Mechatronics: A 5, no. 2 (December 2024): 250-62. https://doi.org/10.55546/jmm.1541043.
EndNote Ünler T (December 1, 2024) Development of Battery-Independent Illumination Drones Integrated into Tethered UAVs for Extended Operations. Journal of Materials and Mechatronics: A 5 2 250–262.
IEEE T. Ünler, “Development of Battery-Independent Illumination Drones Integrated into Tethered UAVs for Extended Operations”, J. Mater. Mechat. A, vol. 5, no. 2, pp. 250–262, 2024, doi: 10.55546/jmm.1541043.
ISNAD Ünler, Tarık. “Development of Battery-Independent Illumination Drones Integrated into Tethered UAVs for Extended Operations”. Journal of Materials and Mechatronics: A 5/2 (December 2024), 250-262. https://doi.org/10.55546/jmm.1541043.
JAMA Ünler T. Development of Battery-Independent Illumination Drones Integrated into Tethered UAVs for Extended Operations. J. Mater. Mechat. A. 2024;5:250–262.
MLA Ünler, Tarık. “Development of Battery-Independent Illumination Drones Integrated into Tethered UAVs for Extended Operations”. Journal of Materials and Mechatronics: A, vol. 5, no. 2, 2024, pp. 250-62, doi:10.55546/jmm.1541043.
Vancouver Ünler T. Development of Battery-Independent Illumination Drones Integrated into Tethered UAVs for Extended Operations. J. Mater. Mechat. A. 2024;5(2):250-62.