Research Article
BibTex RIS Cite

The Influence of B Content on the Microstructure and Hardness of in Situ Formed TiC-TiB2 Reinforced Fe-Based Hardfacing Coatings

Year 2024, , 327 - 340, 20.12.2024
https://doi.org/10.55546/jmm.1584040

Abstract

In this study, Fe-Cr-Ti-(B, C) based hardfacing coatings with different ratios were produced on DIN St37 steel plate surface using tungsten inert gas (TIG) welding method. It was investigated how increasing boron content affects the morphology of in situ TiC-TiB2 phases expected to form in situ in the coating. The effects of these changes in microstructure on the microhardness of the hardfacing coatings were also determined. X-ray analyses revealed that phases such as α-(Fe, Cr), M2B, TiC, and M7C3 were formed in coatings with 10% B content, and TiB2 phase was also detected in coatings with 20% and 30% boron content. In addition, it was determined that the volume fraction ratio of TiB2 phase increased in the coating microstructures and it was synthesised as a rod-like structure. Accordingly, the microhardness values of the hardfacing coatings increased significantly. The highest microhardness found was 1045 HV0.2 for the coating produced from 30B-Ti composition, which is about 4.5 times higher than the base steel (234 HV0.2).

References

  • Azzi M., Paquette M., Szpunar J.A., Klemberg-Sapieha J.E., Martinu L., Tribocorrosion behaviour of DLC-coated 316L stainless steel. Wear 267 (5-8), 860-866, 2009.
  • Ahn D. G., Hardfacing technologies for improvement of wear characteristics of hot working tools: A review. International Journal of Precision Engineering and Manufacturing, 14(7), 1271-1283, 2013.
  • Amushahi M. H., Ashrafizadeh F., Shamanian M., Characterization of boride-rich hardfacing on carbon steel by arc spray and GMAW processes. Surface and Coatings Technology, 204(16-17), 2723–2728, 2010.
  • Brezinová J., Viňáš J., Guzanová A., Živčák J., Brezina J., Sailer H., Vojtko M., Džupon M., Volkov A., Kolařík L., Rohan P., Puchý V., Selected properties of hardfacing layers created by pta technology. Metals, 11(1), 1-20, 2021.
  • Buytoz S., Ulutan M., In situ synthesis of SiC reinforced MMC surface on AISI 304 stainless steel by TIG surface alloying. Surface and Coatings Technology, 200, 3698-3704, 2006.
  • Chen L., Yu T., Guan C., Zhao Y., Microstructure and properties of metal parts remanufactured by laser cladding TiC and TiB2 reinforced Fe-based coatings. Ceramics International, 48(10), 14127-14140, 2022.
  • D’Oliveira A. S. C. M., Paredes R. S. C., Santos R. L. C., Pulsed current plasma transferred arc hardfacing. Journal of Materials Processing Technology, 171(2), 167-174, 2006.
  • Du B., Zou Z., Wang X., Qu S., Laser cladding of in situ TiB2 /Fe composite coating on steel. Applied Surface Science, 254(20), 6489-6494, 2008.
  • Durmuş H., Çömez N., Gül C., Yurddaşkal, M., Yurddaşkal, M., Wear performance of Fe-Cr-C-B hardfacing coatings: Dry sand/rubber wheel test and ball-on-disc test. International Journal of Refractory Metals and Hard Materials, 77(June), 37-43, 2018.
  • Gramajo J., Gualco A., Svoboda H., Study of the welding procedure in nanostructured super-hard Fe- (Cr, Mo, W) - (C, B) hardfacing. International Journal of Refractory Metals and Hard Materials, 88(December 2019), 1-6, 2020.
  • Gupta N. K., Pyla K. R., Debta M. K., Masanta M., Performance evaluation of TIG cladded in-situ TiC-TiB2 composite coating fabricated on AISI304 stainless steel. Materials Today: Proceedings, 62(P10), 5956-5961, 2022.
  • Hajihashemi M., Shamanian M., Azimi G., Physical, Mechanical, and Dry Sliding Wear Properties of Fe-Cr-W-C Hardfacing Alloys Under Different Tungsten Addition. Metallurgical and Materials Transactions B, 46, 919-927, 2015.
  • Hu Z., Zhang, D., Wu D., Zheng, X., Sun J., Geng P., Ma N., Enhanced mechanical properties of Fe-based hardfacing alloy with Al additions fabricated by laser cladding. Surface and Coatings Technology, 478(January), 130447, 2024.
  • Huang Y., Huang J., Yu X., Yu S., Fan D., Microstructure characterization and texture evolution of Ti-6Al-4V cladding layer fabricated by alterative current assisted TIG. Surface and Coatings Technology, 431, 128014, 2022.
  • Jozwik J., Dziedzic K., Usydus I., Ostrowski D., & Krolczyk G. M., Assessment of internal defects of hardfacing coatings in regeneration of machine parts. Journal of Central South University, 25(5), 1144-1153, 2018.
  • Kaptanoglu M., Eroglu M., Microstructure and wear of iron-based hardfacings reinforced with in-situ synthesized TiB2 particles. Kovove Materialy, 55(2), 123-131, 2017.
  • Kocaman E., Kılınç B., Şen Ş., Şen U., Effect of chromium content on Fe(18-x)CrxB2(X=3,4,5) hardfacing electrode on microstructure, abrasion and corrosion behavior. Journal of the Faculty of Engineering and Architecture of Gazi University, 36(1), 177-190, 2020.
  • Kocaman E., Kılınç B., Şen Ş., Şen U., In-situ TiB2 and Fe2Ti intermetallic assisted hard coatings by Fe-Ti-B based hardfacing electrodes. Journal of Alloys and Compounds, 900, 163478, 2022.
  • Kumar S., Das A. K., Wear resistance and hardness properties of TiB2– Fe coating developed on AISI 1020 steel by tungsten inert gas (TIG) cladding. Ceramics International, 48(20), 30052-30065, 2022.
  • Li P., Wu Y., Liu X., Controlled synthesis of different morphologies of TiB2 microcrystals by aluminum melt reaction method. Materials Research Bulletin, 48(6), 2044-2048, 2013.
  • Lin C. M., Chang C. M., Chen J. H., Hsieh C. C., Wu W., Microstructure and wear characteristics of high-carbon Cr-based alloy claddings formed by gas tungsten arc welding (GTAW). Surface and Coatings Technology, 205(7), 2590-2596, 2010.
  • Pawlik J., Bembenek M., Góral T., Cieślik J., Krawczyk J., Łukaszek-Sołek A., Śleboda T., Frocisz Ł., On the Influence of Heat Input on Ni-WC GMAW Hardfaced Coating Properties. Materials, 16(11), 2023.
  • Tang J., Mechanical and tribological properties of the TiC-TiB2 composite coating deposited on 40Cr-steel by electro spark deposition. Applied Surface Science, 365, 202-208, 2016.
  • Variables P., Works F., A Review on Hardfacing, Process Variables, Challenges, and Future Works. Metals, 13 (1512), 1-37, 2023.
  • Venkatesh B., Sriker K., Prabhakar V. S. V., Wear Characteristics of Hardfacing Alloys: State-of-the-art. Procedia Materials Science, 10(Cnt 2014), 527-532, 2015.
  • Wang Z. T., Zhou X. H., Zhao G. G., Microstructure and formation mechanism of in-situ TiC-TiB2/Fe composite coating. Transactions of Nonferrous Metals Society of China (English Edition), 18(50075085), 831-835, 2008.
  • Weng F., Yu H., Du X., Tian H., Chen C., In situ formed TiB2/TiC complex structure in laser-alloyed coatings with improved wear property. Ceramics International, 48(5), 7056-7062, 2022.
  • Zhang M., Qu K. L., Luo S. X., Liu S., Effect of Cr on the microstructure and properties of TiC-TiB2 particles reinforced Fe-based composite coatings. Surface and Coatings Technology, 316, 131-137, 2017.
  • Zhang M., Zhao G. L., Wang X. H., Liu S. S., Ying W. L., Microstructure evolution and properties of in-situ ceramic particles reinforced Fe-based composite coating produced by ultrasonic vibration assisted laser cladding processing. Surface and Coatings Technology, 403, 126445, 2020.

B içeriğinin Fe esaslı in situ TiC-TiB2 sert dolgu kaplamalarının mikroyapısı ve sertliği üzerindeki etkileri

Year 2024, , 327 - 340, 20.12.2024
https://doi.org/10.55546/jmm.1584040

Abstract

Bu çalışmada, tungsten inert gaz (TIG) kaynak yöntemi kullanılarak DIN St37 çelik levha yüzeyinde farklı oranlarda Fe-Cr-Ti-(B,C) esaslı sert dolgu kaplamaları üretilmiştir. Artan bor içeriğinin kaplamada in situ oluşması beklenen TiC-TiB2 fazlarının morfolojisini nasıl etkilediği araştırılmıştır. Ayrıca mikroyapıdaki bu değişikliklerin sert dolgu kaplamalarının mikrosertliği üzerindeki etkileri de incelenmiştir. X-ışını analizleri, %10 B içeriğine sahip kaplamalarda α-(Fe, Cr), M2B, TiC ve M7C3 gibi fazların oluştuğunu, %20 ve %30 bor içeriğine sahip kaplamalarda ise bu fazların yanısıra TiB2 fazının da tespit edildiğini ortaya koydu. Ayrıca kaplama mikroyapılarında TiB2 fazının hacim fraksiyon oranının arttığı ve çubuksu bir yapı olarak sentezlendiği tespit edilmiştir. Buna bağlı olarak sert dolgu kaplamalarının mikrosertlik değerleri önemli ölçüde artmıştır. Bulunan en yüksek mikrosertlik 1045 HV0.2 ile 30B-Ti bileşiminden üretilen kaplama içindir ve bu değer altlık çelikten (234 HV0.2) yaklaşık 4.5 kat daha yüksektir.

References

  • Azzi M., Paquette M., Szpunar J.A., Klemberg-Sapieha J.E., Martinu L., Tribocorrosion behaviour of DLC-coated 316L stainless steel. Wear 267 (5-8), 860-866, 2009.
  • Ahn D. G., Hardfacing technologies for improvement of wear characteristics of hot working tools: A review. International Journal of Precision Engineering and Manufacturing, 14(7), 1271-1283, 2013.
  • Amushahi M. H., Ashrafizadeh F., Shamanian M., Characterization of boride-rich hardfacing on carbon steel by arc spray and GMAW processes. Surface and Coatings Technology, 204(16-17), 2723–2728, 2010.
  • Brezinová J., Viňáš J., Guzanová A., Živčák J., Brezina J., Sailer H., Vojtko M., Džupon M., Volkov A., Kolařík L., Rohan P., Puchý V., Selected properties of hardfacing layers created by pta technology. Metals, 11(1), 1-20, 2021.
  • Buytoz S., Ulutan M., In situ synthesis of SiC reinforced MMC surface on AISI 304 stainless steel by TIG surface alloying. Surface and Coatings Technology, 200, 3698-3704, 2006.
  • Chen L., Yu T., Guan C., Zhao Y., Microstructure and properties of metal parts remanufactured by laser cladding TiC and TiB2 reinforced Fe-based coatings. Ceramics International, 48(10), 14127-14140, 2022.
  • D’Oliveira A. S. C. M., Paredes R. S. C., Santos R. L. C., Pulsed current plasma transferred arc hardfacing. Journal of Materials Processing Technology, 171(2), 167-174, 2006.
  • Du B., Zou Z., Wang X., Qu S., Laser cladding of in situ TiB2 /Fe composite coating on steel. Applied Surface Science, 254(20), 6489-6494, 2008.
  • Durmuş H., Çömez N., Gül C., Yurddaşkal, M., Yurddaşkal, M., Wear performance of Fe-Cr-C-B hardfacing coatings: Dry sand/rubber wheel test and ball-on-disc test. International Journal of Refractory Metals and Hard Materials, 77(June), 37-43, 2018.
  • Gramajo J., Gualco A., Svoboda H., Study of the welding procedure in nanostructured super-hard Fe- (Cr, Mo, W) - (C, B) hardfacing. International Journal of Refractory Metals and Hard Materials, 88(December 2019), 1-6, 2020.
  • Gupta N. K., Pyla K. R., Debta M. K., Masanta M., Performance evaluation of TIG cladded in-situ TiC-TiB2 composite coating fabricated on AISI304 stainless steel. Materials Today: Proceedings, 62(P10), 5956-5961, 2022.
  • Hajihashemi M., Shamanian M., Azimi G., Physical, Mechanical, and Dry Sliding Wear Properties of Fe-Cr-W-C Hardfacing Alloys Under Different Tungsten Addition. Metallurgical and Materials Transactions B, 46, 919-927, 2015.
  • Hu Z., Zhang, D., Wu D., Zheng, X., Sun J., Geng P., Ma N., Enhanced mechanical properties of Fe-based hardfacing alloy with Al additions fabricated by laser cladding. Surface and Coatings Technology, 478(January), 130447, 2024.
  • Huang Y., Huang J., Yu X., Yu S., Fan D., Microstructure characterization and texture evolution of Ti-6Al-4V cladding layer fabricated by alterative current assisted TIG. Surface and Coatings Technology, 431, 128014, 2022.
  • Jozwik J., Dziedzic K., Usydus I., Ostrowski D., & Krolczyk G. M., Assessment of internal defects of hardfacing coatings in regeneration of machine parts. Journal of Central South University, 25(5), 1144-1153, 2018.
  • Kaptanoglu M., Eroglu M., Microstructure and wear of iron-based hardfacings reinforced with in-situ synthesized TiB2 particles. Kovove Materialy, 55(2), 123-131, 2017.
  • Kocaman E., Kılınç B., Şen Ş., Şen U., Effect of chromium content on Fe(18-x)CrxB2(X=3,4,5) hardfacing electrode on microstructure, abrasion and corrosion behavior. Journal of the Faculty of Engineering and Architecture of Gazi University, 36(1), 177-190, 2020.
  • Kocaman E., Kılınç B., Şen Ş., Şen U., In-situ TiB2 and Fe2Ti intermetallic assisted hard coatings by Fe-Ti-B based hardfacing electrodes. Journal of Alloys and Compounds, 900, 163478, 2022.
  • Kumar S., Das A. K., Wear resistance and hardness properties of TiB2– Fe coating developed on AISI 1020 steel by tungsten inert gas (TIG) cladding. Ceramics International, 48(20), 30052-30065, 2022.
  • Li P., Wu Y., Liu X., Controlled synthesis of different morphologies of TiB2 microcrystals by aluminum melt reaction method. Materials Research Bulletin, 48(6), 2044-2048, 2013.
  • Lin C. M., Chang C. M., Chen J. H., Hsieh C. C., Wu W., Microstructure and wear characteristics of high-carbon Cr-based alloy claddings formed by gas tungsten arc welding (GTAW). Surface and Coatings Technology, 205(7), 2590-2596, 2010.
  • Pawlik J., Bembenek M., Góral T., Cieślik J., Krawczyk J., Łukaszek-Sołek A., Śleboda T., Frocisz Ł., On the Influence of Heat Input on Ni-WC GMAW Hardfaced Coating Properties. Materials, 16(11), 2023.
  • Tang J., Mechanical and tribological properties of the TiC-TiB2 composite coating deposited on 40Cr-steel by electro spark deposition. Applied Surface Science, 365, 202-208, 2016.
  • Variables P., Works F., A Review on Hardfacing, Process Variables, Challenges, and Future Works. Metals, 13 (1512), 1-37, 2023.
  • Venkatesh B., Sriker K., Prabhakar V. S. V., Wear Characteristics of Hardfacing Alloys: State-of-the-art. Procedia Materials Science, 10(Cnt 2014), 527-532, 2015.
  • Wang Z. T., Zhou X. H., Zhao G. G., Microstructure and formation mechanism of in-situ TiC-TiB2/Fe composite coating. Transactions of Nonferrous Metals Society of China (English Edition), 18(50075085), 831-835, 2008.
  • Weng F., Yu H., Du X., Tian H., Chen C., In situ formed TiB2/TiC complex structure in laser-alloyed coatings with improved wear property. Ceramics International, 48(5), 7056-7062, 2022.
  • Zhang M., Qu K. L., Luo S. X., Liu S., Effect of Cr on the microstructure and properties of TiC-TiB2 particles reinforced Fe-based composite coatings. Surface and Coatings Technology, 316, 131-137, 2017.
  • Zhang M., Zhao G. L., Wang X. H., Liu S. S., Ying W. L., Microstructure evolution and properties of in-situ ceramic particles reinforced Fe-based composite coating produced by ultrasonic vibration assisted laser cladding processing. Surface and Coatings Technology, 403, 126445, 2020.
There are 29 citations in total.

Details

Primary Language English
Subjects Plating Technology, Material Characterization
Journal Section Research Articles
Authors

Bülent Kılınç 0000-0003-4928-7148

Publication Date December 20, 2024
Submission Date November 13, 2024
Acceptance Date December 1, 2024
Published in Issue Year 2024

Cite

APA Kılınç, B. (2024). The Influence of B Content on the Microstructure and Hardness of in Situ Formed TiC-TiB2 Reinforced Fe-Based Hardfacing Coatings. Journal of Materials and Mechatronics: A, 5(2), 327-340. https://doi.org/10.55546/jmm.1584040
AMA Kılınç B. The Influence of B Content on the Microstructure and Hardness of in Situ Formed TiC-TiB2 Reinforced Fe-Based Hardfacing Coatings. J. Mater. Mechat. A. December 2024;5(2):327-340. doi:10.55546/jmm.1584040
Chicago Kılınç, Bülent. “The Influence of B Content on the Microstructure and Hardness of in Situ Formed TiC-TiB2 Reinforced Fe-Based Hardfacing Coatings”. Journal of Materials and Mechatronics: A 5, no. 2 (December 2024): 327-40. https://doi.org/10.55546/jmm.1584040.
EndNote Kılınç B (December 1, 2024) The Influence of B Content on the Microstructure and Hardness of in Situ Formed TiC-TiB2 Reinforced Fe-Based Hardfacing Coatings. Journal of Materials and Mechatronics: A 5 2 327–340.
IEEE B. Kılınç, “The Influence of B Content on the Microstructure and Hardness of in Situ Formed TiC-TiB2 Reinforced Fe-Based Hardfacing Coatings”, J. Mater. Mechat. A, vol. 5, no. 2, pp. 327–340, 2024, doi: 10.55546/jmm.1584040.
ISNAD Kılınç, Bülent. “The Influence of B Content on the Microstructure and Hardness of in Situ Formed TiC-TiB2 Reinforced Fe-Based Hardfacing Coatings”. Journal of Materials and Mechatronics: A 5/2 (December 2024), 327-340. https://doi.org/10.55546/jmm.1584040.
JAMA Kılınç B. The Influence of B Content on the Microstructure and Hardness of in Situ Formed TiC-TiB2 Reinforced Fe-Based Hardfacing Coatings. J. Mater. Mechat. A. 2024;5:327–340.
MLA Kılınç, Bülent. “The Influence of B Content on the Microstructure and Hardness of in Situ Formed TiC-TiB2 Reinforced Fe-Based Hardfacing Coatings”. Journal of Materials and Mechatronics: A, vol. 5, no. 2, 2024, pp. 327-40, doi:10.55546/jmm.1584040.
Vancouver Kılınç B. The Influence of B Content on the Microstructure and Hardness of in Situ Formed TiC-TiB2 Reinforced Fe-Based Hardfacing Coatings. J. Mater. Mechat. A. 2024;5(2):327-40.