Research Article
BibTex RIS Cite

Öncül Madde Molaritesine Bağlı Hidrotermal Olarak Biriktirilmiş Antimon Sülfür İnce Filmlerin Morfolojik, Yapısal ve Optik Özellikleri

Year 2025, Volume: 6 Issue: 1, 203 - 213, 19.06.2025
https://doi.org/10.55546/jmm.1663026

Abstract

Antimon sülfür (Sb₂S₃), inorganik yarı iletken fotovoltaikler için absorbe edici malzeme olarak büyük umut vaat etmektedir. Ancak, son zamanlardaki ilerlemelere rağmen, Sb₂S₃ güneş hücrelerinin elde edilen verimlilikleri teorik potansiyellerinin önemli ölçüde altında kalmaktadır. Sb₂S₃ filmlerinin morfolojik, optik ve yapısal özelliklerinin optimize edilmesi, tam potansiyellerine ulaşılması için çok önemlidir. Bu araştırmada, çeşitli antimon potasyum tartarat (C₈H₄K₂O₁₂Sb₂•H₂O) ve sodyum tiyosülfat pentahidrat (Na₂S₂O₃•5H₂O) konsantrasyonları ile indiyum kalay oksit (ITO) kaplı cam alt tabakalar üzerinde yüksek kaliteli Sb₂S₃ ince filmler biriktirmek için hidrotermal biriktirme tekniği kullanılmıştır. X-ışını kırınımı (XRD), taramalı elektron mikroskobu (SEM) ve UV-görünür spektroskopisi ile elde edilen filmlerin yapısal, morfolojik ve optik özellikleri incelenmiştir. Karakterizasyon sonuçları, reaktanların konsantrasyonları ile elde edilen film özellikleri arasında güçlü bir korelasyon olduğunu ortaya koymuştur. Öncül çözeltisindeki Sb ve S kaynaklarının kontrollü molariteleri, verimli fotovoltaikler için çok önem taşıyan uygun bant aralığına, kompakt yüzeye ve (hk1) tercihli yönelimine sahip Sb₂S₃ filmlerinin üretilmesini sağlamıştır.

References

  • Cantas A., Gundogan S. H., Turkoglu F., Koseoglu H., Aygun G., Ozyuzer L., Photovoltaic performance of magnetron sputtered antimony selenide thin film solar cells buffered by cadmium sulfide and cadmium sulfide/zinc sulfide, Thin Solid Films 784, 140070, 2023.
  • Chen Z., Chen G., The effect of absorber thickness on the planar Sb2S3 thin film solar cell: Trade-off between light absorption and charge separation, Solar Energy 201, 323-329, 2020.
  • Deng H., Feng X., Zhu Q., Liu Y., Wang G., Zhang C., Zheng Q., Wu J., Wang W., Cheng S., 8.2%-Efficiency hydrothermal Sb2S3 thin film solar cells by two-step RTP annealing strategy, Science China Materials 67(11), 3666-3674, 2024.
  • Green M. A., Hishikawa Y., Dunlop E. D., Levi D. H., Hohl-Ebinger J., Ho-Baillie A.W., Solar cell efficiency tables (version 52), Progress in Photovoltaics: Research and Applications 26(1), 3-12, 2018.
  • Ito S., Tsujimoto K., Nguyen D-C., Manabe K., Nishino H., Doping effects in Sb2S3 absorber for full-inorganic printed solar cells with 5.7% conversion efficiency, International Journal of Hydrogen Energy 38, 16749-16754, 2013.
  • Jin X., Fang Y., Salim T., Feng M., Hadke S., Leow S. W., Sum T. C., Wong L.H., In Situ Growth of [hk1]-Oriented Sb2S3 for Solution-Processed Planar Heterojunction Solar Cell with 6.4% Efficiency, Advanced Functional Materials 30, 2002887, 2020.
  • Kim S., Park J-S., Walsh A., Identification of killer defects in kesterite thin-film solar cells, ACS Energy Letters 3(2), 496-500, 2018.
  • Kondrotas R., Chen C., Tang J., Sb2S3 solar cells, Joule 2(5), 857-878, 2018.
  • Lee S-J., Sung S-J., Yang K-J., Kang J-K., Kim J. Y., Do Y. S., Kim D-H., Approach to Transparent Photovoltaics Based on Wide Band Gap Sb2S3 Absorber Layers and Optics-Based Device Optimization, ACS Applied Energy Materials 3, 12644-12651, 2020.
  • Liu M., Gong Y., Li Z., Dou M., Wang F., A green and facile hydrothermal approach for the synthesis of high-quality semi-conducting Sb2S3 thin films, Applied Surface Science 387, 790–795, 2016.
  • Myagmarsereejid P., Ingram M., Batmunkh M., Zhong Y.L., Doping strategies in Sb2S3 thin films for solar cells, Small 17(39), 2100241, 2021.
  • Pawar P. S., Nandi R., Neerugatti K. E., Cho J. Y., Heo J., Hydrothermal growth of Sb2S3 thin films on molybdenum for solar cell applications: Effect of post-deposition annealing, Journal of Alloys and Compounds 898, 162891, 2022.
  • Shaji S., Garcia L.V., Loredo S.L., Krishnan B., Aguilar Martinez J.A., Das Roy T.K., Avellaneda D.A., Antimony sulfide thin films prepared by laser assisted chemical bath deposition, Applied Surface Science 393, 369-376, 2017.
  • Shockley W., Queisser H.J., The Shockley-Queisser limit, Journal of Applied Physics 32(3), 510-519, 1961.
  • Tang R., Wang X., Lian W., Huang J., Wei Q., Huang M., Yin Y., Jiang C., Yang S., Xing G., Chen S., Zhu C., Hao X., Green M.A., Chen T., Hydrothermal deposition of antimony selenosulfide thin films enables solar cells with 10% efficiency, Nature Energy 5, 587-595, 2020.
  • Turkoglu F., Ekren M.E., Cantas A., Yakinci K., Gundogan H., Koseoglu H., Aygun G., Ozyuzer L., Structural and optical characteristics of antimony selenosulfide thin films prepared by two-step method, Journal of the Korean Physical Society 81 (3), 278-284, 2022.
  • Turkoglu F., Koseoglu H., Cantas A., Akca F.G., Meric E., Buldu D.G., Ozdemir M., Tarhan E., Ozyuzer L., Aygun G., Effect of defects and secondary phases in Cu2ZnSnS4 absorber material on the performance of Zn(O,S) buffered devices, Thin Solid Films 670, 6-16, 2019.
  • Vavale S.D., Pawar S.G., Deshmukh D.H., Deshmukh H.P., Hydrothermal method for Synthesis of different Nanostructure Metal Oxide thin film, International Journal of Innovative Knowledge Concepts 6(11), 126, 2018.
  • Wang D., Yang Y., Guo T., Xiong X., Xie Y., Li K., Li B., Ghali M., Effect of pulse bias voltages on performance of CdTe thin film solar cells prepared by pulsed laser deposition, Solar Energy 213, 118-125, 2021.
  • Xie Y., Li K., Li X., Gao F., Xiong X., Zeng G., Li B., Fabrication of Sb2S3 solar cells by close space sublimation and enhancing the efficiency via co-selenization, Materials Science in Semiconductor Processing 142, 106451, 2022.
  • Zhao X., Lee J.Y., Kim C-R., Heo J., Shin C.M., Leem J-Y., Sun X., Dependence of the properties of hydrothermally grown ZnO on precursor concentration, Physica E: Low-Dimensional Systems and Nanostructures 41(8), 1423-1426, 2009.
  • Zheng J., Liu C., Zhang L., Chen Y., Bao F., Liu J., Zhu H., Shen K., Mai Y., Enhanced hydrothermal heterogeneous deposition with surfactant additives for efficient Sb2S3 solar cells, Chemical Engineering Journal 446, 136474, 2022.

Precursor Molarity Dependent Morphological, Structural and Optical Properties of Hydrothermally Deposited Antimony Sulfide Thin Films

Year 2025, Volume: 6 Issue: 1, 203 - 213, 19.06.2025
https://doi.org/10.55546/jmm.1663026

Abstract

Antimony sulfide (Sb2S3) holds great promise as an absorber material for inorganic semiconductor photovoltaics. However, despite recent progress, the achieved efficiencies of Sb2S3 solar cells remain substantially below their theoretical potential. Optimizing the morphological, optical, and structural properties of Sb2S3 films is crucial for realizing its full potential. This research utilized hydrothermal deposition technique to deposit high-quality Sb2S3 thin films on indium tin oxide (ITO) coated glass substrates with varying antimony potassium tartrate (C8H4K2O12Sb2•xH2O) and sodium thiosulfate pentahydrate (Na2S2O3•5H2O) concentrations. The films were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-visible spectroscopy to evaluate their structural, morphological, and optical properties. Characterization results revealed a strong correlation between the concentrations of the reactants and the resulting film characteristics. Notably, controlled molarities of Sb and S sources in the precursor solution yielded Sb2S3 films with suitable band gap, compact surface, and (hk1) preferred orientation, all vital for efficient photovoltaics.

Thanks

The author acknowledge the use of facilities provided by ISTE Center for Science and Technology Studies and Research (ISTE-CSTSR) for this research.

References

  • Cantas A., Gundogan S. H., Turkoglu F., Koseoglu H., Aygun G., Ozyuzer L., Photovoltaic performance of magnetron sputtered antimony selenide thin film solar cells buffered by cadmium sulfide and cadmium sulfide/zinc sulfide, Thin Solid Films 784, 140070, 2023.
  • Chen Z., Chen G., The effect of absorber thickness on the planar Sb2S3 thin film solar cell: Trade-off between light absorption and charge separation, Solar Energy 201, 323-329, 2020.
  • Deng H., Feng X., Zhu Q., Liu Y., Wang G., Zhang C., Zheng Q., Wu J., Wang W., Cheng S., 8.2%-Efficiency hydrothermal Sb2S3 thin film solar cells by two-step RTP annealing strategy, Science China Materials 67(11), 3666-3674, 2024.
  • Green M. A., Hishikawa Y., Dunlop E. D., Levi D. H., Hohl-Ebinger J., Ho-Baillie A.W., Solar cell efficiency tables (version 52), Progress in Photovoltaics: Research and Applications 26(1), 3-12, 2018.
  • Ito S., Tsujimoto K., Nguyen D-C., Manabe K., Nishino H., Doping effects in Sb2S3 absorber for full-inorganic printed solar cells with 5.7% conversion efficiency, International Journal of Hydrogen Energy 38, 16749-16754, 2013.
  • Jin X., Fang Y., Salim T., Feng M., Hadke S., Leow S. W., Sum T. C., Wong L.H., In Situ Growth of [hk1]-Oriented Sb2S3 for Solution-Processed Planar Heterojunction Solar Cell with 6.4% Efficiency, Advanced Functional Materials 30, 2002887, 2020.
  • Kim S., Park J-S., Walsh A., Identification of killer defects in kesterite thin-film solar cells, ACS Energy Letters 3(2), 496-500, 2018.
  • Kondrotas R., Chen C., Tang J., Sb2S3 solar cells, Joule 2(5), 857-878, 2018.
  • Lee S-J., Sung S-J., Yang K-J., Kang J-K., Kim J. Y., Do Y. S., Kim D-H., Approach to Transparent Photovoltaics Based on Wide Band Gap Sb2S3 Absorber Layers and Optics-Based Device Optimization, ACS Applied Energy Materials 3, 12644-12651, 2020.
  • Liu M., Gong Y., Li Z., Dou M., Wang F., A green and facile hydrothermal approach for the synthesis of high-quality semi-conducting Sb2S3 thin films, Applied Surface Science 387, 790–795, 2016.
  • Myagmarsereejid P., Ingram M., Batmunkh M., Zhong Y.L., Doping strategies in Sb2S3 thin films for solar cells, Small 17(39), 2100241, 2021.
  • Pawar P. S., Nandi R., Neerugatti K. E., Cho J. Y., Heo J., Hydrothermal growth of Sb2S3 thin films on molybdenum for solar cell applications: Effect of post-deposition annealing, Journal of Alloys and Compounds 898, 162891, 2022.
  • Shaji S., Garcia L.V., Loredo S.L., Krishnan B., Aguilar Martinez J.A., Das Roy T.K., Avellaneda D.A., Antimony sulfide thin films prepared by laser assisted chemical bath deposition, Applied Surface Science 393, 369-376, 2017.
  • Shockley W., Queisser H.J., The Shockley-Queisser limit, Journal of Applied Physics 32(3), 510-519, 1961.
  • Tang R., Wang X., Lian W., Huang J., Wei Q., Huang M., Yin Y., Jiang C., Yang S., Xing G., Chen S., Zhu C., Hao X., Green M.A., Chen T., Hydrothermal deposition of antimony selenosulfide thin films enables solar cells with 10% efficiency, Nature Energy 5, 587-595, 2020.
  • Turkoglu F., Ekren M.E., Cantas A., Yakinci K., Gundogan H., Koseoglu H., Aygun G., Ozyuzer L., Structural and optical characteristics of antimony selenosulfide thin films prepared by two-step method, Journal of the Korean Physical Society 81 (3), 278-284, 2022.
  • Turkoglu F., Koseoglu H., Cantas A., Akca F.G., Meric E., Buldu D.G., Ozdemir M., Tarhan E., Ozyuzer L., Aygun G., Effect of defects and secondary phases in Cu2ZnSnS4 absorber material on the performance of Zn(O,S) buffered devices, Thin Solid Films 670, 6-16, 2019.
  • Vavale S.D., Pawar S.G., Deshmukh D.H., Deshmukh H.P., Hydrothermal method for Synthesis of different Nanostructure Metal Oxide thin film, International Journal of Innovative Knowledge Concepts 6(11), 126, 2018.
  • Wang D., Yang Y., Guo T., Xiong X., Xie Y., Li K., Li B., Ghali M., Effect of pulse bias voltages on performance of CdTe thin film solar cells prepared by pulsed laser deposition, Solar Energy 213, 118-125, 2021.
  • Xie Y., Li K., Li X., Gao F., Xiong X., Zeng G., Li B., Fabrication of Sb2S3 solar cells by close space sublimation and enhancing the efficiency via co-selenization, Materials Science in Semiconductor Processing 142, 106451, 2022.
  • Zhao X., Lee J.Y., Kim C-R., Heo J., Shin C.M., Leem J-Y., Sun X., Dependence of the properties of hydrothermally grown ZnO on precursor concentration, Physica E: Low-Dimensional Systems and Nanostructures 41(8), 1423-1426, 2009.
  • Zheng J., Liu C., Zhang L., Chen Y., Bao F., Liu J., Zhu H., Shen K., Mai Y., Enhanced hydrothermal heterogeneous deposition with surfactant additives for efficient Sb2S3 solar cells, Chemical Engineering Journal 446, 136474, 2022.
There are 22 citations in total.

Details

Primary Language English
Subjects Compound Semiconductors, Material Characterization
Journal Section Research Article
Authors

Fulya Turkoglu 0000-0003-0378-8975

Submission Date March 21, 2025
Acceptance Date May 12, 2025
Early Pub Date June 15, 2025
Publication Date June 19, 2025
Published in Issue Year 2025 Volume: 6 Issue: 1

Cite

APA Turkoglu, F. (2025). Precursor Molarity Dependent Morphological, Structural and Optical Properties of Hydrothermally Deposited Antimony Sulfide Thin Films. Journal of Materials and Mechatronics: A, 6(1), 203-213. https://doi.org/10.55546/jmm.1663026
AMA Turkoglu F. Precursor Molarity Dependent Morphological, Structural and Optical Properties of Hydrothermally Deposited Antimony Sulfide Thin Films. J. Mater. Mechat. A. June 2025;6(1):203-213. doi:10.55546/jmm.1663026
Chicago Turkoglu, Fulya. “Precursor Molarity Dependent Morphological, Structural and Optical Properties of Hydrothermally Deposited Antimony Sulfide Thin Films”. Journal of Materials and Mechatronics: A 6, no. 1 (June 2025): 203-13. https://doi.org/10.55546/jmm.1663026.
EndNote Turkoglu F (June 1, 2025) Precursor Molarity Dependent Morphological, Structural and Optical Properties of Hydrothermally Deposited Antimony Sulfide Thin Films. Journal of Materials and Mechatronics: A 6 1 203–213.
IEEE F. Turkoglu, “Precursor Molarity Dependent Morphological, Structural and Optical Properties of Hydrothermally Deposited Antimony Sulfide Thin Films”, J. Mater. Mechat. A, vol. 6, no. 1, pp. 203–213, 2025, doi: 10.55546/jmm.1663026.
ISNAD Turkoglu, Fulya. “Precursor Molarity Dependent Morphological, Structural and Optical Properties of Hydrothermally Deposited Antimony Sulfide Thin Films”. Journal of Materials and Mechatronics: A 6/1 (June2025), 203-213. https://doi.org/10.55546/jmm.1663026.
JAMA Turkoglu F. Precursor Molarity Dependent Morphological, Structural and Optical Properties of Hydrothermally Deposited Antimony Sulfide Thin Films. J. Mater. Mechat. A. 2025;6:203–213.
MLA Turkoglu, Fulya. “Precursor Molarity Dependent Morphological, Structural and Optical Properties of Hydrothermally Deposited Antimony Sulfide Thin Films”. Journal of Materials and Mechatronics: A, vol. 6, no. 1, 2025, pp. 203-1, doi:10.55546/jmm.1663026.
Vancouver Turkoglu F. Precursor Molarity Dependent Morphological, Structural and Optical Properties of Hydrothermally Deposited Antimony Sulfide Thin Films. J. Mater. Mechat. A. 2025;6(1):203-1.