Research Article
BibTex RIS Cite

Simüle Edilmiş Sabit Ortodontik Apareylerin Florür İçeren Yapay Tükürükte Nikel ve Krom İyon Salınımının Araştırılması

Year 2024, Volume: 5 Issue: 1, 183 - 194, 26.06.2024
https://doi.org/10.55546/jmm.1485312

Abstract

Florür, anti-karyojenik etkisi nedeniyle birçok ağız hijyeni ürününde bulunur. Ancak florürün, uygulama anında başlayan ve rezidüel tükürükte kalan florür ile devam eden korozif etkisi vardır. Bu çalışma, farklı florür konsantrasyonlarının, bakır-nikel-titanyum (Cu-NiTi), nikel-titanyum (NiTi) ve paslanmaz çelik (SS) ark tellerinden yapılmış simüle edilmiş sabit ortodontik apareylerden nikel ve krom iyonlarının salınımı üzerindeki etkisini araştırmayı amaçlamıştır. Deney gruplarındaki simüle ortodontik apareyler, bir saat boyunca 125, 500 veya 900 ppm florür (NaF) ve on bir saat boyunca 0,1 ppm florür içeren Klimek yapay tükürüğüne batırıldı. Sonraki dönemlerde de süreç tekrarlandı. Kontrol grupları sadece Klimek yapay tükürüğüne maruz bırakıldı. Klimek yapay tükürüğüne salınan nikel ve krom iyonlarının miktarları, endüktif eşleşmiş plazma kütle spektroskopisi (ICP-MS) kullanılarak ölçüldü. Ark tellerinin morfolojik özellikleri atomik kuvvet mikroskobu (AFM) ve taramalı elektron mikroskobu (SEM) kullanılarak incelenmiştir. SS ark tellerinin daldırma öncesi ve sonrası ortalama pürüzlülük değeri Cu-NiTi veya NiTi ark tellerine göre daha düşüktü (p<0.05). SS ark tellerine sahip simüle ortodontik apareyler, 125 ppm florür içeren deney gruplarında Cu-NiTi ve NiTi ark tellerine sahip simüle ortodontik apareylere göre daha fazla krom iyonu açığa çıkarmıştır (p<0.05). SS ark tellerine sahip simüle edilmiş sabit ortodontik apareyler, hem kontrol hem de deney gruplarında Cu-NiTi ark tellerine sahip simüle edilmiş sabit ortodontik apareylere göre daha az nikel iyonu salımına neden olmuştur (p<0.05). Ek olarak, SS ark telleri ile simüle edilmiş sabit ortodontik apareyler, kontrol ve 500 ppm florür içeren deney gruplarındaki NiTi ark tellerine göre daha az nikel iyonu salımına neden olmuştur (p<0.05). (p<0.05).

Ethical Statement

Çalışma için etik kurul gerekmemektedir.

Supporting Institution

Tübitak

Project Number

319S015

References

  • Baeshen H., Kjellberg H., Birkhed D., Oral fluoride retention in orthodontic patients with and without fixed appliances after using different fluoridated home-care products, Acta Odontologica Scandinavica, 68(4), 185-192, 2010.
  • Barrett R.D., Bishara S.E., Quinn, J.K., Biodegradation of orthodontic appliances. Part I. Biodegradation of Nickel and chromium in vitro, American Journal of Orthodontics and Dentofacial Orthopedics, 103(1), 8-14, 1993.
  • Brantley W.A., Theodore E., Orthodontic materials: scientific and clinical aspects, American Journal of Orthodontics and dentofacial orthopedics, 119(6), 672-673, 2001.
  • Campus G., Lallai MR., Carboni R., Fluoride concentration in saliva after use of oral hygiene products. Caries research, 37(1), 66-70, 2003.
  • Chantarawaratit P.O., Yanisarapan T., Exposure to the oral environment enhances the corrosion of metal orthodontic appliances caused by fluoride-containing products: Cytotoxicity, metal ion release, and surface roughness, American Journal of Orthodontics and Dentofacial Orthopedics, 160(1), 101-112, 2021.
  • Condò R., Carli E., Cioffi A., Cataldi M.E., Quinzi V., Casaglia, A., ... & Mampieri G., Fluorinated agents effects on orthodontic alloys: a descriptive in vitro study, Materials, 15(13), 4612, 2022.
  • Eliades T., Athanasiou A.E., In vivo aging of orthodontic alloys: Implications for corrosion potential nickel release. and biocompatibility, The Angle Orthodontist, 72(3). 222-237, 2002.
  • Faccioni F., Franceschetti P., Cerpelloni M., Fracasso M.E., In vivo study on metal release from fixed orthodontic appliances and DNA damage in oral mucosa cells, American Journal of Orthodontics and Dentofacial Orthopedics, 124(6), 687-693, discussion 693, 2003.
  • Genelhu M.C.L.S., Marigo M., Alves O.L.F., Malaquias L.C.C., Gomez R.S., Characterisation of nickel-induced allergic contact stomatitis associated with fixed orthodontic appliances American journal of orthodontics and dentofacial orthopedics, 128(3), 378-381, 2005.
  • Heravi F., Moayed M.H., Mokhber N., Effect of fluoride on nickel-titanium and stainless steel orthodontic archwires: an in-vitro study, Journal of Dentistry (Tehran. Iran), 12(1), 49, 2015.
  • Huang H.H, Effects of fluoride concentration and elastic tensile strain on the corrosion resistance of commercially pure titanium, Biomaterials, 23(1), 59-63, 2002.
  • Huang H.H, Effect of fluoride and albumin concentration on the corrosion behavior of Ti–6Al–4V alloy, Biomaterials, 24(2). 275-282, 2003.
  • Huang H.H., Lee T.H., Electrochemical impedance spectroscopy study of Ti–6Al–4V alloy in artificial saliva with fluoride and/or bovine albumin, Dental Materials, 21(8), 749-755, 2005.
  • Jacobs J.J., Gilbert J.L., Urban RM., Corrosion of metal orthopaedic implants, The Journal of Bone and Joint Surgery (American Volume), 80(2), 268-282, 1998.
  • Karnam S.K., Reddy A.N., Manjith C.M., Comparison of metal ion release from different bracket archwire combinations: an in vitro study, J Contemp Dent Pract, 13(3), 376-81, 2012.
  • Klimek J., Hellwig E., Ahrens G., Fluoride taken up by plaque. by the underlying enamel and by clean enamel from three fluoride compounds in vitro, Caries Research, 16(2), 156-161, 1982.
  • Kuhta M., Pavlin D., Slaj M., Varga S., Lapter V.M., Slaj M., Type of archwire and level of acidity: effects on the release of metal ions from orthodontic appliances, The Angle Orthodontist, 79(1), 102-110, 2009.
  • Luft S., Keilig L., Jäger A., Bourauel C., In‐vitro evaluation of the corrosion behavior of orthodontic brackets. Orthod Craniofac Res, 12(1), 43-51, 2009.
  • Mikulewicz M., Chojnacka K., Trace metal release from orthodontic appliances by in vivo studies: a systematic literature review, Biological Trace Element Research, 137(2), 127-138, 2010.
  • Močnik P., Kosec T., Kovač J., Bizjak M., The effect of pH, fluoride and tribocorrosion on the surface properties of dental archwires. Materials Science and Engineering, C, 78, 682-689, 2017.
  • Nakagawa M., Matsuya S., Udoh K., Effects of fluoride and dissolved oxygen concentrations on the corrosion behavior of pure titanium and titanium alloys, Dental materials journal, 21(2), 83-92, 2002.
  • Oshida Y., Sachdeva R.C., Miyazaki S., Microanalytical characterisation and surface modification of TiNi orthodontic archwires. Bio Med Mater Eng. 2(2), 51-69, 1992.
  • Pulikkottil V.J., Chidambaram S., Bejoy P.U., Femin P.K., Paul P., Rishad M., Corrosion resistance of stainless steel nickel-titanium. titanium molybdenum alloy and ion-implanted titanium molybdenum alloy archwires in acidic fluoride-containing artificial saliva: An in vitro study, Journal of Pharmacy and Bioallied Sciences, 8(Suppl 1), S96-S99, 2016.
  • Schiff N., Grosgogeat B., Lissac M., Dalard F., Influence of fluoride content and pH on the corrosion resistance of titanium and its alloys, Biomaterials, 23(9), 1995-2002, 2002.
  • Ten Cate J.M., Duijsters P.P.E., Influence of fluoride in solution on tooth demineralization: II. Microradiographic data, Caries Research, 17(6), 513-519, 1983.
  • Titiz S., Erdoğan Z.K., Tuna E.E.H., Aras A., Nickel release and the viability of Streptococcus mutans corresponding to low risk of dental caries in artificial saliva containing orthodontic appliances: In vitro study, Turkish journal of orthodontics, 35(3), 157, 2022.
  • Yanisarapan T., Thunyakitpisal P., Chantarawaratit PO., Corrosion of metal orthodontic brackets and archwires caused by fluoride-containing products: Cytotoxicity, metal ion release and surface roughness, Orthodontic Waves, 77(2), 79-89, 2018.

Investigation of Nickel and Chromium Ion Release from Simulated Fixed Orthodontic Appliances in Artificial Saliva Containing Fluoride

Year 2024, Volume: 5 Issue: 1, 183 - 194, 26.06.2024
https://doi.org/10.55546/jmm.1485312

Abstract

Fluoride is found in many oral hygiene products due to its anti-cariogenic effect. However, fluoride has a corrosive effect that begins at the time of application and continues with the fluoride remaining in the residual saliva. This study aimed to investigate the effect of different fluoride concentrations on the release of nickel and chromium ions from simulated fixed orthodontic appliances made of copper-nickel-titanium (Cu-NiTi), nickel-titanium (NiTi) and stainless steel (SS) archwires. Simulated orthodontic appliances in the experimental groups were immersed in Klimek artificial saliva containing 125, 500, or 900 ppm fluoride (NaF) for one hour and 0.1 ppm fluoride for eleven hours. The process was repeated in subsequent periods. Control groups were exposed to only Klimek artificial saliva. The amounts of nickel and chromium ions released into Klimek artificial saliva were measured using inductively coupled plasma mass spectroscopy (ICP-MS). The morphological characteristics of the archwires were examined using atomic force microscopy (AFM) and scanning electron microscopy (SEM). The average roughness value of SS archwires before and after immersion was lower than that of Cu-NiTi or NiTi archwires (p<0.05). Simulated orthodontic appliances with SS archwires released more chromium ions than simulated orthodontic appliances with Cu-NiTi and NiTi archwires in experimental groups with 125 ppm fluoride (p<0.05). Simulated fixed orthodontic appliances with SS archwires released fewer nickel ions than simulated fixed orthodontic appliances with Cu-NiTi archwires in both control and experimental groups (p<0.05). Additionally, simulated fixed orthodontic appliances with SS archwires released fewer nickel ions than those with NiTi archwires in control and experimental groups with 500 ppm fluoride (p<0.05).

Project Number

319S015

Thanks

The authors would like to thank The Scientific and Technological Research Council of Türkiye (TUBİTAK, project number 319S015).

References

  • Baeshen H., Kjellberg H., Birkhed D., Oral fluoride retention in orthodontic patients with and without fixed appliances after using different fluoridated home-care products, Acta Odontologica Scandinavica, 68(4), 185-192, 2010.
  • Barrett R.D., Bishara S.E., Quinn, J.K., Biodegradation of orthodontic appliances. Part I. Biodegradation of Nickel and chromium in vitro, American Journal of Orthodontics and Dentofacial Orthopedics, 103(1), 8-14, 1993.
  • Brantley W.A., Theodore E., Orthodontic materials: scientific and clinical aspects, American Journal of Orthodontics and dentofacial orthopedics, 119(6), 672-673, 2001.
  • Campus G., Lallai MR., Carboni R., Fluoride concentration in saliva after use of oral hygiene products. Caries research, 37(1), 66-70, 2003.
  • Chantarawaratit P.O., Yanisarapan T., Exposure to the oral environment enhances the corrosion of metal orthodontic appliances caused by fluoride-containing products: Cytotoxicity, metal ion release, and surface roughness, American Journal of Orthodontics and Dentofacial Orthopedics, 160(1), 101-112, 2021.
  • Condò R., Carli E., Cioffi A., Cataldi M.E., Quinzi V., Casaglia, A., ... & Mampieri G., Fluorinated agents effects on orthodontic alloys: a descriptive in vitro study, Materials, 15(13), 4612, 2022.
  • Eliades T., Athanasiou A.E., In vivo aging of orthodontic alloys: Implications for corrosion potential nickel release. and biocompatibility, The Angle Orthodontist, 72(3). 222-237, 2002.
  • Faccioni F., Franceschetti P., Cerpelloni M., Fracasso M.E., In vivo study on metal release from fixed orthodontic appliances and DNA damage in oral mucosa cells, American Journal of Orthodontics and Dentofacial Orthopedics, 124(6), 687-693, discussion 693, 2003.
  • Genelhu M.C.L.S., Marigo M., Alves O.L.F., Malaquias L.C.C., Gomez R.S., Characterisation of nickel-induced allergic contact stomatitis associated with fixed orthodontic appliances American journal of orthodontics and dentofacial orthopedics, 128(3), 378-381, 2005.
  • Heravi F., Moayed M.H., Mokhber N., Effect of fluoride on nickel-titanium and stainless steel orthodontic archwires: an in-vitro study, Journal of Dentistry (Tehran. Iran), 12(1), 49, 2015.
  • Huang H.H, Effects of fluoride concentration and elastic tensile strain on the corrosion resistance of commercially pure titanium, Biomaterials, 23(1), 59-63, 2002.
  • Huang H.H, Effect of fluoride and albumin concentration on the corrosion behavior of Ti–6Al–4V alloy, Biomaterials, 24(2). 275-282, 2003.
  • Huang H.H., Lee T.H., Electrochemical impedance spectroscopy study of Ti–6Al–4V alloy in artificial saliva with fluoride and/or bovine albumin, Dental Materials, 21(8), 749-755, 2005.
  • Jacobs J.J., Gilbert J.L., Urban RM., Corrosion of metal orthopaedic implants, The Journal of Bone and Joint Surgery (American Volume), 80(2), 268-282, 1998.
  • Karnam S.K., Reddy A.N., Manjith C.M., Comparison of metal ion release from different bracket archwire combinations: an in vitro study, J Contemp Dent Pract, 13(3), 376-81, 2012.
  • Klimek J., Hellwig E., Ahrens G., Fluoride taken up by plaque. by the underlying enamel and by clean enamel from three fluoride compounds in vitro, Caries Research, 16(2), 156-161, 1982.
  • Kuhta M., Pavlin D., Slaj M., Varga S., Lapter V.M., Slaj M., Type of archwire and level of acidity: effects on the release of metal ions from orthodontic appliances, The Angle Orthodontist, 79(1), 102-110, 2009.
  • Luft S., Keilig L., Jäger A., Bourauel C., In‐vitro evaluation of the corrosion behavior of orthodontic brackets. Orthod Craniofac Res, 12(1), 43-51, 2009.
  • Mikulewicz M., Chojnacka K., Trace metal release from orthodontic appliances by in vivo studies: a systematic literature review, Biological Trace Element Research, 137(2), 127-138, 2010.
  • Močnik P., Kosec T., Kovač J., Bizjak M., The effect of pH, fluoride and tribocorrosion on the surface properties of dental archwires. Materials Science and Engineering, C, 78, 682-689, 2017.
  • Nakagawa M., Matsuya S., Udoh K., Effects of fluoride and dissolved oxygen concentrations on the corrosion behavior of pure titanium and titanium alloys, Dental materials journal, 21(2), 83-92, 2002.
  • Oshida Y., Sachdeva R.C., Miyazaki S., Microanalytical characterisation and surface modification of TiNi orthodontic archwires. Bio Med Mater Eng. 2(2), 51-69, 1992.
  • Pulikkottil V.J., Chidambaram S., Bejoy P.U., Femin P.K., Paul P., Rishad M., Corrosion resistance of stainless steel nickel-titanium. titanium molybdenum alloy and ion-implanted titanium molybdenum alloy archwires in acidic fluoride-containing artificial saliva: An in vitro study, Journal of Pharmacy and Bioallied Sciences, 8(Suppl 1), S96-S99, 2016.
  • Schiff N., Grosgogeat B., Lissac M., Dalard F., Influence of fluoride content and pH on the corrosion resistance of titanium and its alloys, Biomaterials, 23(9), 1995-2002, 2002.
  • Ten Cate J.M., Duijsters P.P.E., Influence of fluoride in solution on tooth demineralization: II. Microradiographic data, Caries Research, 17(6), 513-519, 1983.
  • Titiz S., Erdoğan Z.K., Tuna E.E.H., Aras A., Nickel release and the viability of Streptococcus mutans corresponding to low risk of dental caries in artificial saliva containing orthodontic appliances: In vitro study, Turkish journal of orthodontics, 35(3), 157, 2022.
  • Yanisarapan T., Thunyakitpisal P., Chantarawaratit PO., Corrosion of metal orthodontic brackets and archwires caused by fluoride-containing products: Cytotoxicity, metal ion release and surface roughness, Orthodontic Waves, 77(2), 79-89, 2018.
There are 27 citations in total.

Details

Primary Language English
Subjects Corrosion
Journal Section Research Articles
Authors

Serap Titiz Yurdakal 0000-0002-4999-8727

Safiye Elif Korcan 0000-0001-7875-5516

Atıf Koca 0000-0003-0141-5817

Elif Esin Hameş 0000-0001-7302-4781

Project Number 319S015
Publication Date June 26, 2024
Submission Date May 16, 2024
Acceptance Date June 16, 2024
Published in Issue Year 2024 Volume: 5 Issue: 1

Cite

APA Titiz Yurdakal, S., Korcan, S. E., Koca, A., Hameş, E. E. (2024). Investigation of Nickel and Chromium Ion Release from Simulated Fixed Orthodontic Appliances in Artificial Saliva Containing Fluoride. Journal of Materials and Mechatronics: A, 5(1), 183-194. https://doi.org/10.55546/jmm.1485312
AMA Titiz Yurdakal S, Korcan SE, Koca A, Hameş EE. Investigation of Nickel and Chromium Ion Release from Simulated Fixed Orthodontic Appliances in Artificial Saliva Containing Fluoride. J. Mater. Mechat. A. June 2024;5(1):183-194. doi:10.55546/jmm.1485312
Chicago Titiz Yurdakal, Serap, Safiye Elif Korcan, Atıf Koca, and Elif Esin Hameş. “Investigation of Nickel and Chromium Ion Release from Simulated Fixed Orthodontic Appliances in Artificial Saliva Containing Fluoride”. Journal of Materials and Mechatronics: A 5, no. 1 (June 2024): 183-94. https://doi.org/10.55546/jmm.1485312.
EndNote Titiz Yurdakal S, Korcan SE, Koca A, Hameş EE (June 1, 2024) Investigation of Nickel and Chromium Ion Release from Simulated Fixed Orthodontic Appliances in Artificial Saliva Containing Fluoride. Journal of Materials and Mechatronics: A 5 1 183–194.
IEEE S. Titiz Yurdakal, S. E. Korcan, A. Koca, and E. E. Hameş, “Investigation of Nickel and Chromium Ion Release from Simulated Fixed Orthodontic Appliances in Artificial Saliva Containing Fluoride”, J. Mater. Mechat. A, vol. 5, no. 1, pp. 183–194, 2024, doi: 10.55546/jmm.1485312.
ISNAD Titiz Yurdakal, Serap et al. “Investigation of Nickel and Chromium Ion Release from Simulated Fixed Orthodontic Appliances in Artificial Saliva Containing Fluoride”. Journal of Materials and Mechatronics: A 5/1 (June 2024), 183-194. https://doi.org/10.55546/jmm.1485312.
JAMA Titiz Yurdakal S, Korcan SE, Koca A, Hameş EE. Investigation of Nickel and Chromium Ion Release from Simulated Fixed Orthodontic Appliances in Artificial Saliva Containing Fluoride. J. Mater. Mechat. A. 2024;5:183–194.
MLA Titiz Yurdakal, Serap et al. “Investigation of Nickel and Chromium Ion Release from Simulated Fixed Orthodontic Appliances in Artificial Saliva Containing Fluoride”. Journal of Materials and Mechatronics: A, vol. 5, no. 1, 2024, pp. 183-94, doi:10.55546/jmm.1485312.
Vancouver Titiz Yurdakal S, Korcan SE, Koca A, Hameş EE. Investigation of Nickel and Chromium Ion Release from Simulated Fixed Orthodontic Appliances in Artificial Saliva Containing Fluoride. J. Mater. Mechat. A. 2024;5(1):183-94.