Research Article
BibTex RIS Cite

Numerical Investigation of the Flow Characteristics of Slurry Manure in a Digestion Tank

Year 2025, Volume: 6 Issue: 1, 49 - 67, 19.06.2025
https://doi.org/10.55546/jmm.1619158

Abstract

Animal manure, agricultural wastes and sewage sludge are the most widely used organic wastes in biogas production. In our country, manure from animals such as cattle, sheep and chickens is an important source for biogas production. The mixing process in the digestion tank of the reactors used for biogas production significantly affects the biogas production efficiency. In recent years, it is known that the geometric structure of the digestion tank where the mixing process is carried out also affects this efficiency. In the mixing process, the most commonly used mixing type is mechanical mixing with the help of an propeller/impeller. Due to the high cost and time-consuming aspect of experimental studies, in recent years, the flow characteristics inside the digestion tank have been studied with the help of computational fluid dynamics software. In this context, velocity, turbulent eddy dissipation rate and turbulent kinetic energy distributions in the velocity range 50-175 rpm were investigated in a 60° slope digestion tank with a 6-flat-bladed impeller and the potential effects on biogas production were interpreted. The working fluid in the tank is considered by modeling dairy cattle manure as a non-Newtonian fluid. The results show that the velocity, turbulent kinetic energy and turbulent eddy dissipation rate distributions are generally more effective in the impeller region and at the impeller blade tips. In addition, as the impeller angular velocity increased from 50 rpm to 175 rpm, the amount of volume in the tank with velocity values higher than 0.1 m/s increased from 0.000323 m3 to 0.00262 m3.

References

  • Abu-Farah L., Al-Qaessi F., Schönbucher A., Cyclohexane/water dispersion behaviour in a stirred batch vessel experimentally and with CFD simulation. Procedia computer science 1(1), 655-664, 2010.
  • Achkari-Begdouri A., Goodrich P. R., Rheological properties of Moroccan dairy cattle manure. Bioresource technology 40(2), 149-156, 1992.
  • Bridgeman J., Computational fluid dynamics modelling of sewage sludge mixing in an anaerobic digester. Advances in Engineering Software 44(1), 54-62, 2012.
  • Cao X., Jiang K., Ding H., Yang P., Zhao Z., Xu G., Simulation and Analysis of Flow Field in Sludge Anaerobic Digestion Reactor based on Computational Fluid Dynamics. International Journal of Chemical Reactor Engineering 16(3), 2018.
  • Carreau P. J., De Kee D. C., Chhabra R. P., Rheology of polymeric systems: principles and applications, Carl Hanser Verlag GmbH Co KG, 2021.
  • Celik A. F., Elibol E. A., Turgut O., Senol H., Sillanpää M., Interpretation of possible biogas production capacity by investigating the effects of anaerobic digester tank geometry and angular velocity on flow characteristics. Environmental Science and Pollution Research: 1-15, 2024.
  • Fan W. B., Li W. G., Gong X. J., Zhang X. R., Evaluation of the effect of a hydraulic impeller in a flocculation basin on hydrodynamic behavior using computational fluid dynamics. Desalination and Water Treatment 54(4-5), 1361-1374, 2015.
  • Hoseini S., Najafi G., Ghobadian B., Akbarzadeh A., Impeller shape-optimization of stirred-tank reactor: CFD and fluid structure interaction analyses. Chemical Engineering Journal 413, 127497, 2021.
  • Kong J. Y., Wu Z. W., Hou Y., Wang X. D., Numerical simulation for solid-liquid two-phase flow in stirred vanadium leaching tank. Applied Mechanics and Materials 456, 314-319, 2014.
  • Launder B. E., Spalding D. B., Lectures in mathematical models of turbulence. 1972.
  • Mousavi S. E., Choudhury M. R., Rahaman M. S., 3-D CFD-PBM coupled modeling and experimental investigation of struvite precipitation in a batch stirred reactor. Chemical Engineering Journal 361, 690-702, 2019.
  • Oates A., Neuner T., Meister M., Borman D., Camargo-Valero M., Sleigh A., Fischer P., Modelling mechanically induced non-Newtonian flows to improve the energy efficiency of anaerobic digesters. Water 12(11), 2995, 2020.
  • Rasool A. A., Ahmad S. S., Hamad F., Effect of impeller type and rotational speed on flow behavior in fully baffled mixing tank. International Journal of Advanced Research (IJAR) 5(1), 1195-1208, 2017.
  • Sadino-Riquelme C., Hayes R. E., Jeison D., Donoso-Bravo A., Computational fluid dynamic (CFD) modelling in anaerobic digestion: General application and recent advances. Critical Reviews in Environmental Science and Technology 48(1), 39-76, 2018.
  • Servati P., Hajinezhad A., CFD simulation of anaerobic digestier to investigate sludge rheology and biogas production. Biomass Conversion and Biorefinery 10(4), 885-899, 2020.
  • Shen F., Tian L., Yuan H., Pang Y., Chen S., Zou D., Zhu B., Liu Y., Li X., Improving the mixing performances of rice straw anaerobic digestion for higher biogas production by computational fluid dynamics (CFD) simulation. Applied biochemistry and biotechnology 171(3), 626-642, 2013.
  • Sindall R., Bridgeman J., Carliell-Marquet C., Velocity gradient as a tool to characterise the link between mixing and biogas production in anaerobic waste digesters. Water science and technology 67(12), 2800-2806, 2013.
  • Thakur H., Verma N. K., Dhar A., Powar S., Investigation of continuous stirred tank reactors for improving the mixing in anaerobic digestion: A numerical study. Results in Engineering 19, 101317, 2023.
  • Versteeg H. K., Malalasekera W., An introduction to computational fluid dynamics: The finite volume method, England, Pearson, 2007.
  • Vilardi G., Verdone N., Production of metallic iron nanoparticles in a baffled stirred tank reactor: Optimization via computational fluid dynamics simulation. Particuology 52, 83-96, 2020.
  • Wang H., Aguirre-Villegas H. A., Larson R. A., Alkan-Ozkaynak A., Physical properties of dairy manure pre-and post-anaerobic digestion. Applied Sciences 9(13), 2703, 2019.
  • Wang J., Xue Q., Guo T., Mei Z., Long E., Wen Q., Huang W., Luo T., Huang R., A review on CFD simulating method for biogas fermentation material fluid. Renewable and Sustainable Energy Reviews 97, 64-73, 2018.
  • Wu B., CFD analysis of mechanical mixing in anaerobic digesters. Transactions of the ASABE 52(4), 1371-1382, 2009.
  • Wu B., CFD simulation of mixing in egg-shaped anaerobic digesters. Water research 44(5), 1507-1519, 2010.
  • Wu B., CFD investigation of turbulence models for mechanical agitation of non-Newtonian fluids in anaerobic digesters. Water research 45(5), 2082-2094, 2011.
  • Wu B., Large eddy simulation of mechanical mixing in anaerobic digesters. Biotechnology and Bioengineering 109(3), 804-812, 2012.
  • Wu B., Chen S., CFD simulation of non‐Newtonian fluid flow in anaerobic digesters. Biotechnology and bioengineering 99(3), 700-711, 2008.

Çürütme Tankında Bulamaç Şeklindeki Gübrenin Akış Karakteristiğinin Sayısal Olarak İncelenmesi

Year 2025, Volume: 6 Issue: 1, 49 - 67, 19.06.2025
https://doi.org/10.55546/jmm.1619158

Abstract

Biyogaz üretiminde en yaygın olarak kullanılan organik atıkların başında hayvan gübreleri, tarımsal atıklar ve atık su çamurları gelmektedir. Ülkemizde sığır, koyun, tavuk gibi hayvanların gübreleri biyogaz üretimi için önemli bir kaynaktır. Biyogaz üretimi için ise kullanılan reaktörlerin çürütme tankında meydana getirilen karıştırma prosesi biyogaz üretim verimini önemli ölçüde etkilemektedir. Son yıllarda, karıştırma prosesinin gerçekleştirildiği çürütme tankının geometrik yapısının da bu verimi etkilediği bilinmektedir. Karıştırma prosesinde en yaygın kullanılan karıştırma tipi bir karıştırıcı/pervane yardımıyla yapılan mekanik karıştırmadır. Deneysel çalışmaların yüksek maliyetli ve zaman alıcı olmasından dolayı son yıllarda çürütme tankı içindeki akış karakteristiği hesaplamalı akışkanlar dinamiği yazılımları yardımıyla incelenmektedir. yararlanılmaktadır. Bu bağlamda, 60° eğimli ve engelleyicili bir çürütme tankında 6-düz-kanatlı karıştırıcı kullanılarak, 50-175 rpm hız aralığındaki hız, türbülans eddy disipasyon oranı ve türbülanslı kinetik enerji dağılımları incelenmiş ve sonuçlar biyogaz üretimi üzerindeki olası etkileri yorumlanmıştır. Tank içindeki çalışma akışkanı süt sığırı gübresinin Newtonyal olmayan akışkan olarak modellenerek ele alınmıştır. Sonuçlar, hız, türbülans kinetik enerji ve türbülans eddy disipasyon oranı dağılımının genel olarak karıştırıcı bölgesinde ve karıştırıcı kanat uçlarında daha etkili olduğunu göstermektedir. Ayrıca, karıştırıcı açısal hızının 50 rpm’den 175 rpm’e yükselmesiyle tank içinde hızın 0,1 m/s’den daha yüksek değerlere sahip olduğu hacim miktarı 0,000323 m3’den 0,00262 m3’e kadar yükselmiştir.

References

  • Abu-Farah L., Al-Qaessi F., Schönbucher A., Cyclohexane/water dispersion behaviour in a stirred batch vessel experimentally and with CFD simulation. Procedia computer science 1(1), 655-664, 2010.
  • Achkari-Begdouri A., Goodrich P. R., Rheological properties of Moroccan dairy cattle manure. Bioresource technology 40(2), 149-156, 1992.
  • Bridgeman J., Computational fluid dynamics modelling of sewage sludge mixing in an anaerobic digester. Advances in Engineering Software 44(1), 54-62, 2012.
  • Cao X., Jiang K., Ding H., Yang P., Zhao Z., Xu G., Simulation and Analysis of Flow Field in Sludge Anaerobic Digestion Reactor based on Computational Fluid Dynamics. International Journal of Chemical Reactor Engineering 16(3), 2018.
  • Carreau P. J., De Kee D. C., Chhabra R. P., Rheology of polymeric systems: principles and applications, Carl Hanser Verlag GmbH Co KG, 2021.
  • Celik A. F., Elibol E. A., Turgut O., Senol H., Sillanpää M., Interpretation of possible biogas production capacity by investigating the effects of anaerobic digester tank geometry and angular velocity on flow characteristics. Environmental Science and Pollution Research: 1-15, 2024.
  • Fan W. B., Li W. G., Gong X. J., Zhang X. R., Evaluation of the effect of a hydraulic impeller in a flocculation basin on hydrodynamic behavior using computational fluid dynamics. Desalination and Water Treatment 54(4-5), 1361-1374, 2015.
  • Hoseini S., Najafi G., Ghobadian B., Akbarzadeh A., Impeller shape-optimization of stirred-tank reactor: CFD and fluid structure interaction analyses. Chemical Engineering Journal 413, 127497, 2021.
  • Kong J. Y., Wu Z. W., Hou Y., Wang X. D., Numerical simulation for solid-liquid two-phase flow in stirred vanadium leaching tank. Applied Mechanics and Materials 456, 314-319, 2014.
  • Launder B. E., Spalding D. B., Lectures in mathematical models of turbulence. 1972.
  • Mousavi S. E., Choudhury M. R., Rahaman M. S., 3-D CFD-PBM coupled modeling and experimental investigation of struvite precipitation in a batch stirred reactor. Chemical Engineering Journal 361, 690-702, 2019.
  • Oates A., Neuner T., Meister M., Borman D., Camargo-Valero M., Sleigh A., Fischer P., Modelling mechanically induced non-Newtonian flows to improve the energy efficiency of anaerobic digesters. Water 12(11), 2995, 2020.
  • Rasool A. A., Ahmad S. S., Hamad F., Effect of impeller type and rotational speed on flow behavior in fully baffled mixing tank. International Journal of Advanced Research (IJAR) 5(1), 1195-1208, 2017.
  • Sadino-Riquelme C., Hayes R. E., Jeison D., Donoso-Bravo A., Computational fluid dynamic (CFD) modelling in anaerobic digestion: General application and recent advances. Critical Reviews in Environmental Science and Technology 48(1), 39-76, 2018.
  • Servati P., Hajinezhad A., CFD simulation of anaerobic digestier to investigate sludge rheology and biogas production. Biomass Conversion and Biorefinery 10(4), 885-899, 2020.
  • Shen F., Tian L., Yuan H., Pang Y., Chen S., Zou D., Zhu B., Liu Y., Li X., Improving the mixing performances of rice straw anaerobic digestion for higher biogas production by computational fluid dynamics (CFD) simulation. Applied biochemistry and biotechnology 171(3), 626-642, 2013.
  • Sindall R., Bridgeman J., Carliell-Marquet C., Velocity gradient as a tool to characterise the link between mixing and biogas production in anaerobic waste digesters. Water science and technology 67(12), 2800-2806, 2013.
  • Thakur H., Verma N. K., Dhar A., Powar S., Investigation of continuous stirred tank reactors for improving the mixing in anaerobic digestion: A numerical study. Results in Engineering 19, 101317, 2023.
  • Versteeg H. K., Malalasekera W., An introduction to computational fluid dynamics: The finite volume method, England, Pearson, 2007.
  • Vilardi G., Verdone N., Production of metallic iron nanoparticles in a baffled stirred tank reactor: Optimization via computational fluid dynamics simulation. Particuology 52, 83-96, 2020.
  • Wang H., Aguirre-Villegas H. A., Larson R. A., Alkan-Ozkaynak A., Physical properties of dairy manure pre-and post-anaerobic digestion. Applied Sciences 9(13), 2703, 2019.
  • Wang J., Xue Q., Guo T., Mei Z., Long E., Wen Q., Huang W., Luo T., Huang R., A review on CFD simulating method for biogas fermentation material fluid. Renewable and Sustainable Energy Reviews 97, 64-73, 2018.
  • Wu B., CFD analysis of mechanical mixing in anaerobic digesters. Transactions of the ASABE 52(4), 1371-1382, 2009.
  • Wu B., CFD simulation of mixing in egg-shaped anaerobic digesters. Water research 44(5), 1507-1519, 2010.
  • Wu B., CFD investigation of turbulence models for mechanical agitation of non-Newtonian fluids in anaerobic digesters. Water research 45(5), 2082-2094, 2011.
  • Wu B., Large eddy simulation of mechanical mixing in anaerobic digesters. Biotechnology and Bioengineering 109(3), 804-812, 2012.
  • Wu B., Chen S., CFD simulation of non‐Newtonian fluid flow in anaerobic digesters. Biotechnology and bioengineering 99(3), 700-711, 2008.
There are 27 citations in total.

Details

Primary Language English
Subjects Computational Methods in Fluid Flow, Heat and Mass Transfer (Incl. Computational Fluid Dynamics)
Journal Section Research Articles
Authors

Emre Aşkın Elibol 0000-0001-8573-6065

Early Pub Date June 15, 2025
Publication Date June 19, 2025
Submission Date January 13, 2025
Acceptance Date February 20, 2025
Published in Issue Year 2025 Volume: 6 Issue: 1

Cite

APA Elibol, E. A. (2025). Numerical Investigation of the Flow Characteristics of Slurry Manure in a Digestion Tank. Journal of Materials and Mechatronics: A, 6(1), 49-67. https://doi.org/10.55546/jmm.1619158
AMA Elibol EA. Numerical Investigation of the Flow Characteristics of Slurry Manure in a Digestion Tank. J. Mater. Mechat. A. June 2025;6(1):49-67. doi:10.55546/jmm.1619158
Chicago Elibol, Emre Aşkın. “Numerical Investigation of the Flow Characteristics of Slurry Manure in a Digestion Tank”. Journal of Materials and Mechatronics: A 6, no. 1 (June 2025): 49-67. https://doi.org/10.55546/jmm.1619158.
EndNote Elibol EA (June 1, 2025) Numerical Investigation of the Flow Characteristics of Slurry Manure in a Digestion Tank. Journal of Materials and Mechatronics: A 6 1 49–67.
IEEE E. A. Elibol, “Numerical Investigation of the Flow Characteristics of Slurry Manure in a Digestion Tank”, J. Mater. Mechat. A, vol. 6, no. 1, pp. 49–67, 2025, doi: 10.55546/jmm.1619158.
ISNAD Elibol, Emre Aşkın. “Numerical Investigation of the Flow Characteristics of Slurry Manure in a Digestion Tank”. Journal of Materials and Mechatronics: A 6/1 (June2025), 49-67. https://doi.org/10.55546/jmm.1619158.
JAMA Elibol EA. Numerical Investigation of the Flow Characteristics of Slurry Manure in a Digestion Tank. J. Mater. Mechat. A. 2025;6:49–67.
MLA Elibol, Emre Aşkın. “Numerical Investigation of the Flow Characteristics of Slurry Manure in a Digestion Tank”. Journal of Materials and Mechatronics: A, vol. 6, no. 1, 2025, pp. 49-67, doi:10.55546/jmm.1619158.
Vancouver Elibol EA. Numerical Investigation of the Flow Characteristics of Slurry Manure in a Digestion Tank. J. Mater. Mechat. A. 2025;6(1):49-67.