Research Article
BibTex RIS Cite
Year 2017, , 107 - 115, 30.06.2017
https://doi.org/10.17261/Pressacademia.2017.455

Abstract

References

  • Aksoy, A., Öztürk, N. 2011, “Supplier selection and performance evaluation in just-in-time production environments”, Expert Systems with Applications, vol. 38, pp. 6351-6359.
  • Arıkan, F. 2012, “Lojistik Köyler ve Bir Uygulama”, Bahçeşehir Üniversitesi Fen Bilimleri Enstitüsü Kentsel Sistemler ve Ulaştırma Yönetimi, Yüksek Lisans Tezi, İstanbul.
  • Bamyacı, M. 2008, “Modern Lojistik Yönetimi: Organize Lojistik Bölgeleri için Bir Yer Seçimi Modeli”, İstanbul Üniversitesi Fen Bilimleri Enstitüsü Deniz Ulaştırma İşletme Mühendisliği Anabilim Dalı, Doktora Tezi, İstanbul.
  • Benjelloun, A., Crainic T.G. 2009, “Trends, Challenges, and Perspectives In City Logistics”, Buletinul AGIR, no. 4, pp. 45-51.
  • Can, A. M. 2012, “Çok Kriterli Karar Verme Teknikleri ile Samsun Lojistik Köyü Yerinin Belirlenmesi”, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Endüstri Mühendisliği Anabilim Dalı, Yüksek Lisans Tezi, Kayseri.
  • Crainic, T.G., Ricciardi, N., Storchi, G. 2009, “Models for evaluating and planning city logistics systems”, Transportation Science, vol. 43, pp. 432-454.
  • Demiroğlu, Ş., Eleren, A. 2014, Küresel lojistik köyleri ve Türkiye’de kurulması planlanan lojistik köy bölgelerinin ÇKKV yöntemleriyle belirlenmesi”, Dumlupınar Üniversitesi Sosyal Bilimler Dergisi, sayı 42, s. 189-202.
  • EasyNN-plus Help, The user interface manual.
  • Elevli, B. 2014, “Logistics freight center locations decision by using Fuzzy- PROMETHEE”, Transport, vol. 29, pp. 412-418.
  • Elgün, M. N. 2011, “Uluslararası Taşıma Ve Ticarette Lojistik Köylerin Sağladığı Rekabet Avantajları: Bir Model Önerisi”, Afyon Kocatepe Üniversitesi Sosyal Bilimleri Enstitüsü Işletme Ana Bilim Dalı, Doktora Tezi, Afyonkarahisar.
  • Eryürük, S. H. 2010, “Tekstil ve Konfeksiyon Sektörleri Arasında Etkin Lojistik Faaliyetlerinin Gerçekleştirilmesi Amacıyla Bir Lojistik Merkez Yer Seçimi Ve Tasarımı”, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü Tekstil Mühendisliği Ana Bilim Dalı, Doktora Tezi, İstanbul.
  • Görgülü, H. 2012, “Lojistik Köyler ve Konya Uygulaması”, Bahçeşehir Üniversitesi Fen Bilimleri Enstitüsü Kentsel Sistemler ve Ulaştırma Yönetimi, Yüksek Lisans Tezi, İstanbul.
  • Haykin, S. 2008, “Neural Networks and Learning Machines”, 3rd Edition, Prentice Hall.
  • Hua, J., Qi-hong., L. 2009, “Study on logistics center location judgement based on Aritificial Neural Networks”, First International Workshop on Education Technology and Computer Science, pp. 346-348.
  • İnaç, H. 2012, “İstanbul’un Kentsel Lojistik Analizi ve Çözüm Önerilerinin AHP ile Değerlendirilmesi”, Bahçeşehir Üniversitesi Fen Bilimleri Enstitüsü Kentsel Sistemler ve Ulaştırma Yönetimi, Yüksek Lisans Tezi, İstanbul.
  • Li, Y., Liu, Y. 2011, “The Application of Fuzzy Neural Network in Distribution Center Location”, International Conference on Energy Systems and Electrical Power, no: 13, 6458-6463.
  • Lin, J. 2012, “The application of logistic center location based on Fuzzy BP Neural Network” Service Systems and Service Management, 9th International Conference.
  • Önden, İ., Eldemir, F., Çancı, M. 2015, “Logistics center concept and location decision criteria”, Sigma Journal Engineering and Natural Sciences, vol. 33, pp. 325-340.
  • Önden, İ., Acar, A. Z., Eldemir, F. 2016, “Evaluation of the logistics center locations using a multi-criteria spatial approach”, Transport, Article in press, pp. 1-13.
  • Önder, E., Yıldırım, B. F. 2014, “VIKOR method for ranking logistic villages In Turkey”, Yönetim ve Ekonomi Araştırmaları Dergisi, sayı 23, s. 293-314.
  • Özceylan, E., Erbaş, M., Tolon, M., Kabak, M., Durgut, T. 2016, “Evaluation of freight villages: A GIS-based multi-criteria decision analysis”, Computers In Industry, vol. 76, pp. 38-52.
  • Pamucar, D., Vasin L., Atanaskovic, P., & Milicic, M. 2016, “Planning the city logistic terminal location by applying the green p-median model and type-2 Neurofuzzy Network”, Computational Intelligence and Neuroscience, vol. 2016, pp. 1-15.
  • Peker, İ. 2012, “Analitik Ağ Süreci yöntemiyle lojistik merkez yer seçimi: Trabzon örneği”, Karadeniz Teknik Üniversitesi İşletme Ana Bilim Dalı, Doktora Tezi, Trabzon.
  • Peker, İ., Baki, B., Tanyaş, M., Ar, İ. M. 2016, “Logistics center site selection by ANP/BOCR analysis: A case study of Turkey”, Journal of Intelligent & Fuzzy Systems, vol. 30, pp. 2383–2396.
  • Rao, C., Goh, M., Zhao, Y., Zheng, J. 2015, “Location selection of city logistics centers under sustainability”, Transportation Research, vol. 36, pp. 29-44.
  • Sürmeli, G. 2013, “Lojistik Merkezi Seçimine Yönelik Bulanık Çok Ölçütlü Karar Verme Modeli: Doğu Anadolu Bölgesi için bir uygulama”, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Endüstri Mühendisliği Ana Bilim Dalı Sistem Mühendisliği, Yüksek Lisans Tezi, İstanbul.
  • Taniguchi, E., Thompson, R. G., Yamada, T., Duin, R. V. 2001, “City Logistics, Network Modelling and Intelligent Transport Systems”, Elsevier, Pergamon, Oxford, 252 pp.
  • Tanyaş, M., Arıkan, F. 2013, “Bursa İli Lojistik Merkez Ön Fizibilite Raporu”, T.C. Kalkınma Bakanlığı ve Bursa Eskişehir Bilecik Kalkınma Ajansı, Bursa.
  • Villamizar, A. F. M., Torres, J. R. M., Padilla, N., H. 2014, “Mathematical programming modeling and resolution of the location-routing problem in urban logistics”, Ing. Univ. Bogotá, Colombia, vol. 18, pp. 271-289.
  • Kayıkçı, Y. 2010, “A conceptual model for intermodal freight logistics centre location decisions”, Procedia Social and Behavioral Sciences, vol. 2, pp. 6297–6311. URL 1, www.tcdd.gov.tr.
  • Yuxiang, S., Qing, C., Zhenhua, W. 2009, “Logistics distribution center location evaluation based on Genetic Algorithm and Fuzzy Neural Network”, Computational Intelligence and Intelligent Systems, vol. 51, pp. 305-312.
  • Zak, J., Weglinski, S. 2014, “The selection of the logistics center location based on MCDM/A methodology”, Transportation Research Procedia, vol. 3, pp. 555-564.

AN ARTIFICIAL NEURAL NETWORK APPROACH FOR THE LOGISTICS CENTER LOCATION SELECTION

Year 2017, , 107 - 115, 30.06.2017
https://doi.org/10.17261/Pressacademia.2017.455

Abstract

Purpose- The importance of the city freight transport is crucial when
the sustainable development of the city is considered. City logistics come up
against the environmental problems such as traffic congestion, air and noise
pollution. The importance of the analyzing and controlling the city logistics
activities is evident, considering the effects on the big cities that have a
considerable population, a developed industry, and considerable logistics
activities. The location selection decision of the logistics center is crucial
in terms of the efficient design of the network. The aim of this study is to
develop a system that intended to help decision makers decide the feasibility
of the potential location for the logistics centers by entering the input
values for the parameters of the location.  

Methodology- In this study, the factors such as accessibility,
costs, land feasibility, socio-economic and environmental factors is
considering as the critical factors in selecting the most suitable logistics
center location. An artificial neural network approach is proposed for the location
selection problem of the logistics centers.

Findings- The findings indicate that the parameter associated with the
socio-economic and environmental impact is crucial on logistics center location
decision. The output values of the neural network is compared with the real
values of the logistics center located in Turkey. The test results indicate
that the artificial neural network gives feasible outputs by entering the input
values that are not include in the training datasets.

Conclusion- The factors affecting logistics center location
decision are socio-economic and environmental, accessibility, land feasibility
and costs, respectively.
As a result of this study, the
developed neural network is not only help the decision makers to choose the
feasible logistics center location through the alternatives but also decide the
feasibility of any location by entering the value of the input parameters. 

References

  • Aksoy, A., Öztürk, N. 2011, “Supplier selection and performance evaluation in just-in-time production environments”, Expert Systems with Applications, vol. 38, pp. 6351-6359.
  • Arıkan, F. 2012, “Lojistik Köyler ve Bir Uygulama”, Bahçeşehir Üniversitesi Fen Bilimleri Enstitüsü Kentsel Sistemler ve Ulaştırma Yönetimi, Yüksek Lisans Tezi, İstanbul.
  • Bamyacı, M. 2008, “Modern Lojistik Yönetimi: Organize Lojistik Bölgeleri için Bir Yer Seçimi Modeli”, İstanbul Üniversitesi Fen Bilimleri Enstitüsü Deniz Ulaştırma İşletme Mühendisliği Anabilim Dalı, Doktora Tezi, İstanbul.
  • Benjelloun, A., Crainic T.G. 2009, “Trends, Challenges, and Perspectives In City Logistics”, Buletinul AGIR, no. 4, pp. 45-51.
  • Can, A. M. 2012, “Çok Kriterli Karar Verme Teknikleri ile Samsun Lojistik Köyü Yerinin Belirlenmesi”, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Endüstri Mühendisliği Anabilim Dalı, Yüksek Lisans Tezi, Kayseri.
  • Crainic, T.G., Ricciardi, N., Storchi, G. 2009, “Models for evaluating and planning city logistics systems”, Transportation Science, vol. 43, pp. 432-454.
  • Demiroğlu, Ş., Eleren, A. 2014, Küresel lojistik köyleri ve Türkiye’de kurulması planlanan lojistik köy bölgelerinin ÇKKV yöntemleriyle belirlenmesi”, Dumlupınar Üniversitesi Sosyal Bilimler Dergisi, sayı 42, s. 189-202.
  • EasyNN-plus Help, The user interface manual.
  • Elevli, B. 2014, “Logistics freight center locations decision by using Fuzzy- PROMETHEE”, Transport, vol. 29, pp. 412-418.
  • Elgün, M. N. 2011, “Uluslararası Taşıma Ve Ticarette Lojistik Köylerin Sağladığı Rekabet Avantajları: Bir Model Önerisi”, Afyon Kocatepe Üniversitesi Sosyal Bilimleri Enstitüsü Işletme Ana Bilim Dalı, Doktora Tezi, Afyonkarahisar.
  • Eryürük, S. H. 2010, “Tekstil ve Konfeksiyon Sektörleri Arasında Etkin Lojistik Faaliyetlerinin Gerçekleştirilmesi Amacıyla Bir Lojistik Merkez Yer Seçimi Ve Tasarımı”, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü Tekstil Mühendisliği Ana Bilim Dalı, Doktora Tezi, İstanbul.
  • Görgülü, H. 2012, “Lojistik Köyler ve Konya Uygulaması”, Bahçeşehir Üniversitesi Fen Bilimleri Enstitüsü Kentsel Sistemler ve Ulaştırma Yönetimi, Yüksek Lisans Tezi, İstanbul.
  • Haykin, S. 2008, “Neural Networks and Learning Machines”, 3rd Edition, Prentice Hall.
  • Hua, J., Qi-hong., L. 2009, “Study on logistics center location judgement based on Aritificial Neural Networks”, First International Workshop on Education Technology and Computer Science, pp. 346-348.
  • İnaç, H. 2012, “İstanbul’un Kentsel Lojistik Analizi ve Çözüm Önerilerinin AHP ile Değerlendirilmesi”, Bahçeşehir Üniversitesi Fen Bilimleri Enstitüsü Kentsel Sistemler ve Ulaştırma Yönetimi, Yüksek Lisans Tezi, İstanbul.
  • Li, Y., Liu, Y. 2011, “The Application of Fuzzy Neural Network in Distribution Center Location”, International Conference on Energy Systems and Electrical Power, no: 13, 6458-6463.
  • Lin, J. 2012, “The application of logistic center location based on Fuzzy BP Neural Network” Service Systems and Service Management, 9th International Conference.
  • Önden, İ., Eldemir, F., Çancı, M. 2015, “Logistics center concept and location decision criteria”, Sigma Journal Engineering and Natural Sciences, vol. 33, pp. 325-340.
  • Önden, İ., Acar, A. Z., Eldemir, F. 2016, “Evaluation of the logistics center locations using a multi-criteria spatial approach”, Transport, Article in press, pp. 1-13.
  • Önder, E., Yıldırım, B. F. 2014, “VIKOR method for ranking logistic villages In Turkey”, Yönetim ve Ekonomi Araştırmaları Dergisi, sayı 23, s. 293-314.
  • Özceylan, E., Erbaş, M., Tolon, M., Kabak, M., Durgut, T. 2016, “Evaluation of freight villages: A GIS-based multi-criteria decision analysis”, Computers In Industry, vol. 76, pp. 38-52.
  • Pamucar, D., Vasin L., Atanaskovic, P., & Milicic, M. 2016, “Planning the city logistic terminal location by applying the green p-median model and type-2 Neurofuzzy Network”, Computational Intelligence and Neuroscience, vol. 2016, pp. 1-15.
  • Peker, İ. 2012, “Analitik Ağ Süreci yöntemiyle lojistik merkez yer seçimi: Trabzon örneği”, Karadeniz Teknik Üniversitesi İşletme Ana Bilim Dalı, Doktora Tezi, Trabzon.
  • Peker, İ., Baki, B., Tanyaş, M., Ar, İ. M. 2016, “Logistics center site selection by ANP/BOCR analysis: A case study of Turkey”, Journal of Intelligent & Fuzzy Systems, vol. 30, pp. 2383–2396.
  • Rao, C., Goh, M., Zhao, Y., Zheng, J. 2015, “Location selection of city logistics centers under sustainability”, Transportation Research, vol. 36, pp. 29-44.
  • Sürmeli, G. 2013, “Lojistik Merkezi Seçimine Yönelik Bulanık Çok Ölçütlü Karar Verme Modeli: Doğu Anadolu Bölgesi için bir uygulama”, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Endüstri Mühendisliği Ana Bilim Dalı Sistem Mühendisliği, Yüksek Lisans Tezi, İstanbul.
  • Taniguchi, E., Thompson, R. G., Yamada, T., Duin, R. V. 2001, “City Logistics, Network Modelling and Intelligent Transport Systems”, Elsevier, Pergamon, Oxford, 252 pp.
  • Tanyaş, M., Arıkan, F. 2013, “Bursa İli Lojistik Merkez Ön Fizibilite Raporu”, T.C. Kalkınma Bakanlığı ve Bursa Eskişehir Bilecik Kalkınma Ajansı, Bursa.
  • Villamizar, A. F. M., Torres, J. R. M., Padilla, N., H. 2014, “Mathematical programming modeling and resolution of the location-routing problem in urban logistics”, Ing. Univ. Bogotá, Colombia, vol. 18, pp. 271-289.
  • Kayıkçı, Y. 2010, “A conceptual model for intermodal freight logistics centre location decisions”, Procedia Social and Behavioral Sciences, vol. 2, pp. 6297–6311. URL 1, www.tcdd.gov.tr.
  • Yuxiang, S., Qing, C., Zhenhua, W. 2009, “Logistics distribution center location evaluation based on Genetic Algorithm and Fuzzy Neural Network”, Computational Intelligence and Intelligent Systems, vol. 51, pp. 305-312.
  • Zak, J., Weglinski, S. 2014, “The selection of the logistics center location based on MCDM/A methodology”, Transportation Research Procedia, vol. 3, pp. 555-564.
There are 32 citations in total.

Details

Journal Section Articles
Authors

Burcu Kaya This is me

Nursel Öztürk

Publication Date June 30, 2017
Published in Issue Year 2017

Cite

APA Kaya, B., & Öztürk, N. (2017). AN ARTIFICIAL NEURAL NETWORK APPROACH FOR THE LOGISTICS CENTER LOCATION SELECTION. Journal of Management Marketing and Logistics, 4(2), 107-115. https://doi.org/10.17261/Pressacademia.2017.455

Journal of Management, Marketing and Logistics (JMML) is a scientific, academic, double blind peer-reviewed, quarterly and open-access online journal. The journal publishes four issues a year. The issuing months are March, June, September and December. The publication languages of the Journal are English and Turkish. JMML aims to provide a research source for all practitioners, policy makers, professionals and researchers working in the areas of management, marketing, logistics, supply chain management, international trade. The editor in chief of JMML invites all manuscripts that cover theoretical and/or applied researches on topics related to the interest areas of the Journal. JMML charges no submission or publication fee.


Ethics Policy - JMML applies the standards of Committee on Publication Ethics (COPE). JMML is committed to the academic community ensuring ethics and quality of manuscripts in publications. Plagiarism is strictly forbidden and the manuscripts found to be plagiarized will not be accepted or if published will be removed from the publication. Authors must certify that their manuscripts are their original work. Plagiarism, duplicate, data fabrication and redundant publications are forbidden. The manuscripts are subject to plagiarism check by iThenticate or similar. All manuscript submissions must provide a similarity report (up to 15% excluding quotes, bibliography, abstract, method).


Open Access - All research articles published in PressAcademia Journals are fully open access; immediately freely available to read, download and share. Articles are published under the terms of a Creative Commons license which permits use, distribution and reproduction in any medium, provided the original work is properly cited. Open access is a property of individual works, not necessarily journals or publishers. Community standards, rather than copyright law, will continue to provide the mechanism for enforcement of proper attribution and responsible use of the published work, as they do now.