Amaç- Bu çalışmada, tedarikçi-görev atamalarını verimli bir biçimde yapacak zeki bir planlama/çizelgeleme önerilmektedir. Tedarik zinciri yönetimine ilişkin lojistik destek programları kapsamında, mevcut görevlerin hangi tedarikçiler tarafından ve hangi sıralarla gerçekleştirileceğini belirleyecek bir çizelgeleme programı geliştirilmiştir. Bir dizi tedarikçiden her biri tüm görevlerin bir kısmını belirli bir sırada gerçekleştirir ve tüm görevlerin en az maliyetle gerçekleştirilmesi amaçlanır. Her tedarikçinin gerçekleştirebileceği sınırlı görev sayısı önceden belirlidir.
Yöntem- Çalışmanın temel katkısı, problemin her görevin farklı bir önceliği/ağırlığı olabilecek şekilde modellenmiş olmasıdır. Bu amaçla tasarlanan çok-hedefli maliyet fonksiyonu iki alt-maliyetten oluşmaktadır: (1) kaynak-görev ikilisi arasındaki maliyet ve (2) aynı kaynak tarafından gerçekleştirilecek görevlerin tamamlanmalarına ilişkin sıralama önceliğini ifade eden ağırlık değerleri. Çözüm için genetik algoritmalar tabanlı meta-sezgisel bir yöntem kullanıldı.
Bulgular- Algoritmanın başarısını test edebilmek için çeşitli görev ağırlıkları ile farklı sayılarda görevler ve tedarikçiler içeren örnekler oluşturuldu. Geliştirilen algoritma bu örnekler üzerinde işletilerek elde edilen sonuçlar sunulmuştur.
Sonuç- Doğru ve uygun çizelgelerin kayda değer sürelerde üretilebildiği gözlemlenmiştir.
Purpose- In this study, an intelligent scheduling to efficiently make supplier-task assignments is proposed. As the logistic support regarding supply chain management, a scheduling program was developed to determine the suppliers to perform the existing tasks with the orders. Each of a number of suppliers performs a subset of all tasks with a certain order and it is aimed to perform all of them with the minimum cost. The limited number of tasks to be performed by each supplier is predetermined.
Methodology- The main contribution here is to model the problem so that each task can have a different precedence/weight. The multi-objective cost function hereby designed consists of two sub-costs: (1) the cost between source-task pair, and (2) the weights referring to the ordering precedence regarding the completion of the tasks to be performed by the same source. For the solution, a genetic algorithms based meta-heuristic was used.
Findings- To test the success of the algorithm, instances including different numbers of tasks and suppliers were created with various task weights. The results obtained by executing the developed algorithm on these instances are presented.
Conclusion- Moreover, it was observed that accurate and appropriate schedules could be generated within significant times.
Primary Language | English |
---|---|
Journal Section | Articles |
Authors | |
Publication Date | December 30, 2018 |
Published in Issue | Year 2018 |
Journal of Management,
Marketing and Logistics (JMML) is a scientific, academic, double blind peer-reviewed,
quarterly and open-access online journal. The journal publishes four issues a year. The issuing
months are March, June, September and December. The publication languages
of the Journal are English and Turkish. JMML aims to provide a research source
for all practitioners, policy makers, professionals and researchers working in
the areas of management, marketing, logistics, supply chain management,
international trade. The editor in chief of JMML invites all manuscripts that
cover theoretical and/or applied researches on topics related to the interest
areas of the Journal. JMML charges no submission or publication fee.
Ethics Policy - JMML applies the standards of Committee on Publication Ethics (COPE). JMML is committed to the academic community ensuring ethics and quality of manuscripts in publications. Plagiarism is strictly forbidden and the manuscripts found to be plagiarized will not be accepted or if published will be removed from the publication. Authors must certify that their manuscripts are their original work. Plagiarism, duplicate, data fabrication and redundant publications are forbidden. The manuscripts are subject to plagiarism check by iThenticate or similar. All manuscript submissions must provide a similarity report (up to 15% excluding quotes, bibliography, abstract, method).
Open Access - All research articles published in PressAcademia Journals are fully open access; immediately freely available to read, download and share. Articles are published under the terms of a Creative Commons license which permits use, distribution and reproduction in any medium, provided the original work is properly cited. Open access is a property of individual works, not necessarily journals or publishers. Community standards, rather than copyright law, will continue to provide the mechanism for enforcement of proper attribution and responsible use of the published work, as they do now.